
PRENTICE HALL SOFTWARE SERIES

BRIAN W KERNIGHAN
DENNIS M. RITCHIE

THE
SECOND EDITION

Second Edition

PROGRAMMING
LANGUAGE

c
THE

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

AT&T Bell Laboratories
Murray Hill, New Jersey

Brian W. Kernighan • Dennis M. Ritchie

Second Edition

PROGRAMMING
LANGUAGE

c
THE

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A. , Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

{PBK}0-13-110362-8
0-l3-110370-9

ISBN
ISBN

10 9 8 7

Printed in the United States of America

Prentice Hall Software Series
Brian Kernighan, Advisor

This book was typeset (pic Itbll eqn Itroff -ms) in Times Roman and Courier by
the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running
the 9th Edition of the UNIX. operating system.

UNIX is a registered trademark of AT&T.

Copyrighte 1988, 1978by Bell TelephoneLaboratories, Incorporated.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy­
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneouslyin Canada.

Kernighan, Brian W.
The C programming language.
Includes index.
1. C (Computer program language) I. Ritchie,

Dennis M. II. Title.
QA76.73.C15K47 1988 005.13'3 88-5934
ISBN 0-13-110370-9
ISBN 0-13-110362-8 (pbk.)

Ubrary of Congress Cataloging-in-Publication Data

Michuzi
Sticky Note

,

Preface ix

Preface to the First Edition xi

Introduction I

Chapter I. A Tutorial Introduction 5
1.1 Getting Started 5
1.2 Variables and Arithmetic Expressions 8
1.3 The For Statement 13
1.4 Symbolic Constants 14
1.5 Character Input and Output 15
1.6 Arrays 22
1.7 Functions 24
1.8 Arguments-Call by Value 27
1.9 Character Arrays 28
1.10 External Variables and Scope 31

Chapter 2. Types, Operators, and Expressions 35
2.1 Variable Names 35
2.2 Data Types and Sizes 36
2.3 Constants 37
2.4 Declarations 40
2.5 Arithmetic Operators 41
2.6 Relational and Logical Operators 41
2.7 Type Conversions 42
2.8 Increment and Decrement Operators 46
2.9 Bitwise Operators 48
2.10 Assignment Operators and Expressions 50
2.11 Conditional Expressions 51
2.12 Precedence and Order of Evaluation 52

Chapter 3. Control Flow 55
3.1 Statements and Blocks 55
3.2 If-Else 55

Contents

vi THE C PROGRAMMING LANGUAGE CONTENTS

3.3 Else-If 57
3.4 Switch 58
3.5 Loops- While and For 60
3.6 Loops- Do-while 63
3.7 Break and Continue 64
3.8 Goto and Labels 65

Chapter 4. Functionsand Program Structure 67
4.1 Basicsof Functions 67
4.2 Functions Returning Non-integers 71
4.3 External Variables 73
4.4 Scope Rules 80
4.5 Header Files 81
4.6 Static Variables 83
4.7 Register Variables 83
4.8 BlockStructure 84
4.9 Initialization 85
4.10 Recursion 86
4.11 The C Preprocessor 88

Chapter 5. Pointers and Arrays 93
5.1 Pointers and Addresses 93
5.2 Pointers and Function Arguments 95
5.3 Pointers and Arrays 97
5.4 Address Arithmetic 100
5.5 Character Pointers and Functions 104
5.6 Pointer Arrays; Pointers to Pointers 107
5.7 Multi-dimensionalArrays 110
5.8 Initialization of Pointer Arrays 113
5.9 Pointers vs. Multi-dimensionalArrays 113
5.10 Command-lineArguments 114
5.11 Pointers to Functions 118
5.12 Complicated Declarations 122

Chapter 6. Structures 127
6.1 Basicsof Structures 127
6.2 Structures and Functions 129
6.3 Arrays of Structures 132
6.4 Pointers to Structures 136
6.5 Self-referential Structures 139
6.6 Table Lookup 143
6.7 Typedef 146
6.8 Unions 147
6.9 Bit-fields 149

Chapter 7. Input and Output 151
7.1 Standard Input and Output 151
7.2 Formatted Output-Printf 153

CONTENTS vii

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195~
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259

263

Appendix B. Standard Library
Bl Input and Output: <stdio.h>
B2 Character Class Tests: <ctype.h>
B3 String Functions: < string.h >
B4 Mathematical Functions: <rnath.h>
B5 Utility Functions: <stdlib.h>
B6 Diagnostics: < assert.h >
B7 Variable Argument Lists: <stdarg.h>
B8 Non-local Jumps: <setjmp.h>
B9 Signals: <signal.h>
BIODate and Time Functions: < time.h >
Bll Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

Appendix A. Reference Manual
A 1 Introduction
A2 Lexical Conventions
A3 Syntax Notation
A4 Meaning of Identifiers
A5 Objects and Lvalues
A6 Conversions
A7 Expressions
A8 Declarations
A9 Statements
AI0 External Declarations
A11 Scope and Linkage
A12 Preprocessing
A13 Grammar

The UNIX System Interface
File Descriptors
Low Level I/O-Read and Write
Open, Creat, Close, Unlink
Random Access- Lseek
Example-An Implementation of Fopen and Getc
Example - Listing Directories
Example- A Storage Allocator

Chapter 8.
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Variable-length Argument Lists
Formatted Input-Scanf
File Access
Error Handling-Stderr and Exit
Line Input and Output
Miscellaneous Functions

7.3
7.4
7.5
7.6
7.7
7.8

THE C PROGRAMMING LANGUAGE

Ix

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American '
National Standards Institute (ANSI) established a committee whose goal was to
produce "an unambiguous and machine-independent definition of the language
C," while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro­
vides a new form of function declaration that permits cross-checkingof defini­
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved,we have chosen to write exclusivelyin the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi­
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

Preface

Brian W. Kernighan
Dennis M. Ritchie

examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers­
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program­
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C "wears well as one's experi­
ence with it grows." With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi­
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from BHl Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein­
berger. Dave Prosser answered many detailed questions about the ANSI stand­
ard. We used Bjarne Stroustrup's C++ translator extensively for local testing
of our programs, and Pave Kristol provided us with an ANSI C compiler for
final testing, Rich Drechsler helped greatly with typesetting.

Our sincerethanks to all.

X PREFACE

xi

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a "very high level" language, nor a "big" one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen­
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys­
tem on the DEC PDP-ll, by Dennis Ritchie. The operating system, the C com­
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys­
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con­
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besidesshowinghow
to make effective use of the language, we have also tried where possible to illus­
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam­
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeablecol­
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one's experience with it grows. We hope that this book will help you to use it
well.

Preface to the First Edition

Brian W. Kernighan
Dennis M. Ritchie

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug McIlroy, Bill Roome, Bob Rosin,
and Larry Rosier all read multiple versionswith care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill PIauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

xii PREFACE TO THE 1ST EDITION

1

C is a general-purpose programming language. It has been closely associ­
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to anyone operating system or machine; and although it has been
called a "system programming language" because it is useful for writing com­
pilers and operating systems, it has been used equally well to write major pro­
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and Bare "typeless" languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating­
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well­
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possiblecases (switch), loopingwith the termination test at the
top (while, for) or at the bottom (do),and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
"automatic," or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively "low level" language. This characterization is not

Introduction

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com­
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini­
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili­
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly­
called functions. Most C implementations have included a reasonably standard
collectionof such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera­
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi­
ciency ("You mean I have to call a function to compare two character
strings?"), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu­
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
"ANSI C," was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

1 INTRODUCTION

effects on most programmers.
A second significant contribution of the standard is the definition of a library

to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca­
tion, string manipulation, and the like. A collection of standard headers pro­
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closelymodeled on the "standard 1/0 library"
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change. .

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self­
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselvesport­
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care' it is easy to write port­
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversionsthat
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophythat programmers knowwhat they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro­
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+ 1. Although we have tried where possibleto
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
Concentratedon the language.

THE C PROGRAMMING LANGUAGE 3

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switcb, while, for, etc. Chapter 4 covers functions and program
structure-external variables, scope rules, multiple source files, and so on-and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys­
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat­
ing system, concentrating on input/output, the file system, and storage alloca­
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges­
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one's
own compiler remain the final authorities on the language.

4 INTRODUCTION

s

1. 1 Getting Started
The only way to learn a new programming language is by writing programs

in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the program

Let us begin with a quick introduction to C. Our aim is to show the essen­
tial elements of the language in real programs, but without getting boggeddown
in details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C's rich set
of operators, several control-flowstatements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story on
any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and elegant as they might be. We have
tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repeti­
tion will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from the
material in this chapter 'to their own programming needs. Beginners should sup­
plement it by writing small, similar programs of their own. Both groups can use
it as a framework on which to hang the more detailed descriptions that begin in
Chapter 2.

CHAPTER 1: A Tutorial Introduction

tells the compiler to include information about the standard input/output
library; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling
function to provide a list of values, called arguments, to the function it calls.
The parentheses after the function name surround the argument list. In this

it will print
hello, world

On other systems, the rules will be different; check with a local expert.
Now for some explanations about the program itself. A C program, what­

ever its .size, consists of functions and variables. A function contains state­
ments that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and
functions of Fortran or the procedures and functions of Pascal. Our example is
a function named.main. Normally you are at liberty to give functions whatever
names you like, but "main" is special-your program begins executing at the
beginning of main. This means that every program must have a main some­
where.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

If you haven't botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable file
called a. out. Ifyou run a. out by typing the command

a.out

}

Just how to run this program depends on the system you are using. As a
specific example, on the UNIX operating system you must create the program in
a file whose name ends in ". c", such as hello. c, then compile it with the
command

cc hello.c

printf("hello, world\n");

maine)
{

text somewhere, compile it successfully, load it, run it, and find out where your
output went. With these mechanical details mastered, everything else is com­
paratively easy.

In C, the program to print "hello, world"is
#include <stdio.h>

CHAPTER 16 A TUTORIAL INTRODUCTION

the C compiler will produce an error message.
printf never supplies a newline automatically, so several calls may be used

to build up an output line in stages. Our"first program could just as well have
been written

printf("hello, world
") ;

A function is called by naming it, followedby a parenthesized list of arguments,
so this calls the function printf with the argument "hello, world\n".
printf is a library function that prints output, in this case the string of char­
acters between the quotes.

A sequence of characters in double quotes, like "hello, world\n", is
called a character string or string constant. For the moment our only use of
character strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character, which
when printed advances the output to the left margin on the next line. If you
leave out the \n (a worthwhile experiment), you will find that there is no line
advance after the output is printed. You must use \n to include a newline
character in the printf argument; if you try something like

printf("hello, world\n");

example, main is defined to be a function that expects no arguments, which is
indicated by the empty list ().

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

The first C program.

}

maincalls libraryJunction printf
to print this sequenceoj characters;
\n represents the newline character

printf("hello, world\n");

maine) define a Junction namedmain
that receivesno argument values

statements oj mainare enclosed in braces{

include information about standard library#include <stdio.h>

GETTING STARTED 7SECTION 1.1

1.2 Variables and Arithmetic Expressions
The next program uses the formula 0C - (519)(0 F-32) to print the follow-

ing table of Fahrenheit temperatures and their centigrade or Celsius equivalents:
o -17
20 -6
40 4
60 15
80 26
100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named
main. It is longer than the one that printed "hello, world", but not compli­
cated. It introduces several new ideas, including comments, declarations, vari­
ables, arithmetic expressions, loops, and formatted output.

}

to produce identical output.
Notice that \n represents only a single character. An escape sequence like

\n provides a general and extensible mechanism for representing hard-to-type
or invisible characters. Among the others that C provides are \ t for tab, \b
for backspace, \ n for the double quote, and \ \ for the backslash itself. There
is a complete list in Section 2.3.

Exercise 1-1. Run the "hello, world" program on your system. Experiment
with leaving out parts of the program, to see what error messages you get. 0

Exercise 1-2. Experiment to find out what happens when printf's argument
string contains \c, where c is some character not listed above. 0

printf("hello, ");
printf("world");
printf ("'n");

maine)
{

#include <stdio.h>

CHAPTER 18 A TUTORIAL INTRODUCTION

character - a single byte
short integer
long integer
double-precision floating point

char
short
long
double

The type int means that the variables listed are integers, by contrast with
f loa t, which means floating point, i.e., numbers that may have a fractional
part. The range of both int and float depends on the machine you are
using; 16-bit ints, which lie between -32768 and +32767, are common, as are
32-bit ints. A float number is typically a 32-bit quantity, with at least six
significant digits and magnitude generally between about 10-38 and 10+38•

C provides several other basic data types besides int and f loa t, including:

int fahr, celsius;
int lower, upper, step;

are a comment, which in this case explains briefly what the program does. Any
characters between 1* and *1 are ignored by the compiler; they may be used
freely to make a program easier to understand. Comments may appear any­
where a blank or tab or newline can.

In C, all variables must be declared before they are used, usually at the
beginning of the function before any executable statements. A declaration
announces the properties of variables; it consists of a type name and a list of
variables, such as

1* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 *1

The two lines

}
}

fahr = lower;
while (fahr <= upper) {

celsius = 5 * (fahr-32) I 9;
printf(""d\t%d\n", fahr, celsius);
fahr = fahr + step;

1* lower limit of temperature table *1
1* upper limit *1
1* step size *1

lower = 0;
upper = 300;
step = 20;

int fahr, celsius;
int lower, upper, step;

1* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 *1

maine)
{

#include <stdio.h>

VARIABLES AND ARITHMETIC EXPRESSIONS 9SECTION 1.2

In either case, we will always indent the statements controlled by the while by
one tab stop {whichwe have shown as four spaces} so you can see at a glance
which statements are inside the loop. The indentation emphasizes the logical
structure of the program. Although C compilers do not care about how a pro­
gram looks, proper indentation and spacing are critical in making programs easy
for people to read. We recommend writing only one statement per line, and
using blanks around operators to clarify grouping. The position of braces is less
important, although people hold passionate beliefs. We have chosen one of
several popular styles. Pick a style that suits you, then use it consistently.

Most of the work gets done in the body of the loop. The Celsius tempera­
ture is computed and assigned to the variable celsius by the statement

celsius = 5 * (fahr-32) / 9;

The reason for multiplying by 5 and then dividing by 9 instead of just multiply­
ing by 5/9 is that in C, as in many other languages, integer division truncates:
any fractional part is discarded. Since 5 and 9 are integers, 5/9 would be
truncated to zero and so all the Celsius temperatures would be reported as zero.

}

The while loop operates as follows: The condition in parentheses is tested. If
it is true {fahr is less than or equal to upper}, the body of the loop {the three
statements enclosed in braces} is executed. Then the condition is re-tested, and
if true, the body is executed again. When the test becomes false {fahr exceeds
upper} the loop ends, and execution continues at the statement that followsthe
loop. There are no further statements in this program, so it terminates.

The body of a while can be one or more statements enclosed in braces, as
in the temperature converter, or a single statement without braces, as in

while (i < j)
i = 2 * i;

lower = 0;
upper = 300;
step = 20;
fahr = lower;

which set the variables to their initial values. Individual statements are ter­
minated by semicolons.

Each line of the table is computed the same way, so we use a loop that
repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {

The sizes of these objects are also machine-dependent. There are also arrays,
structures and unions of these basic types, pointers to them, and junctions that
return them, all of which we will meet in due course.

Computation in the temperature conversionprogram begins with the assign­
ment statements

CHAPTER 110 A TUTORIAL INTRODUCTION

The more serious problem is that because we have used integer arithmetic,
the Celsius temperatures are not very accurate; for instance, 00 F is actually
about -17.80C, not -17. To get more accurate answers, we should use
floating-point arithmetic instead of integer. This requires some changes in the
program. Here is a second version:

This example also shows a bit more of how printf works. printf is a
general-purpose output formatting function, which we will describe in detail in
Chapter 7. Its first argument is a string of characters to be printed, with each
" indicating where one of the other (second, third, ...) arguments is to be substi­
tuted, and in what form it is to be printed. For instance, "d specifies an integer
argument, so the statement

printf("~\t~\n", fahr, celsius);

causes the values of the two integers fahr and celsius to be printed, with a
tab (\ t) between them.

Each " construction in the first argument of printf is paired with the
corresponding second argument, third argument, etc.; they must match up prop­
erly by number and type, or you'll get wrong answers.

By the way, printf is not part of the C language; there is no input or out­
put defined in C itself. prihtf is just a useful function from the. standard
library of functions that are normally accessible to C programs. The behavior
of printf is defined in the ANSIstandard, however,so its properties should be
the same with any compiler and library that conforms to the standard.

In order to concentrate on C itself, we won't talk much about input and out­
put until Chapter 7. In particular, we will defer formatted input until then. If
you have to input numbers, read the discussion of the function scanf in Sec­
tion 7.4. scanf is like printf, except that it reads input instead of writing
output.

There are a couple of problems with the temperature conversion program.
The simpler one is that the output isn't very pretty because the numbers are not
right-justified. That's easy to fix; if we augment each "d in the printf state­
ment with a width, the numbers printed will be right-justified in their fields.
For instance, we might say

printf(""3d "6d\n", fahr, celsius);

to print the first number of each line in a field three digits wide, and the second
in a field six digits wide, like this:

o -17
20 -6
40 4
60 15
80 26
100 37

VARIABLES AND ARITHMETIC EXPRESSIONS 11SECTION 1.2

}

This is much the same as before, except that fahr and celsius are
declared to be f loa t, and the formula for conversion is written in a more
natural way. We were unable to use 5/9 in the previous version because
integer division would truncate it to zero. A decimal point in a constant indi­
cates that it is floating point, however, so 5. 0/9 . 0 is not truncated because it
is the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is per­
formed. If an arithmetic operator has one floating-point operand and one
integer operand, however, the integer will be converted to floating point before
the operation is done. If we had written fahr-32, the 32would be automati­
cally converted to floating point. Nevertheless, writing floating-point constants
with explicit decimal points even when they have integral values emphasizes
their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in
Chapter 2. For now, notice that the assignment

fahr = lower;

and the test
while (fahr <= upper)

also work in the natural way-the int is converted to float before the opera­
tion is done.

The printf conversion specification %3.Of says that a floating-point
number (here fahr) is to be printed at least three characters wide, with no
decimal point and no fraction digits. %6 • 1f describes another number
(celsius) that is to be printed at least six characters wide, with 1digit after
the decimal point. The output looks like this:

}

fahr = lower;
while (fahr <= upper) {

celsius = (5.0/9.0) * (fahr-32.0);
printf("%3.0f %6.1f\n", fahr, celsius);
fahr = fahr + step;

/* lower limit of temperature table */
/* upper limit */
/* step size */

lower = 0;
upper = 300;
step = 20;

float fahr, celsius;
int lower, upper, step;

/* pri~t Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300; floatinq-point version */

maine)
{

linclude <stdio.h>

CHAPTER 112 A TUTORIAL INTRODUCTION

}

This produces the same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, and we
have made it an into The lower and upper limits and the step size appear only
as constants in the for statement, itself a new construction, and the expression
that computes the Celsius temperature now appears as the third argument of
printf instead of as a separate assignment statement.

This last change is an instance of a general rule-in any context where it is

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf(""3d "6.1f\n", fahr, (S.0/9.0)*(fahr-32»;

int fahr;

1* print Fahrenheit-Celsius table *1
main()
{

There are plenty of different ways to write a program for a particular task.
Let's try a variation on the temperature converter.

#include <stdio.h>

1.3 The For Statement

Exercise 1-4. Write a program to print the corresponding Celsius to Fahrenheit
table. 0

Width and precision may be omitted from a specification: %6f says that the
number is to be at least six characters wide; %. 2f specifies two characters after
the decimal point, but the width is not constrained; and %f merely says to print
the number as floating point.

"d print as decimal integer
"6d print as decimal integer, at least 6 characters wide"f print as floating point
"6f print as floating point, at least 6 characters wide
".2f print as floating point, 2 characters after decimal point
"6.2f print as floating point, at least 6 wide and 2 after decimal point

Among others, printf also recognizes %0 for octal, %x for hexadecimal, %c for
character, %8 for character string, and %% for" itself.

Exercise 1-3. Modify the temperature conversion program to print a heading
above the table. 0

o -17.8
20 -6.7
40 4.4

THE FOR STATEMENT 13SECTION 1.3

A final observation before we leave temperature conversionforever. It's bad
practice to bury "magic numbers" like 300 and 20 in a program; they convey
little information to someone who might have to read the program later, and
they are hard to change In a systematic way. One way to deal with magic
numbers is to give them meaningful names. A #define line defines a sym­
bolic name or symbolic constant to be a particular string of characters:

#def ine name replacement text

Thereafter, any occurrence of name (not in quotes and not part of another
name) will be replaced by the corresponding replacement text. The name has
the same form as a variable name: a sequence of letters and digits that begins
with a letter. The replacement text can be any sequence of characters; it is not
limited to numbers.

1.4 Symbolic Constants

is executed, and the condition re-evaluated. The loop terminates if the condition
has become false. As with the whi1e, the body of the loop can be a single
statement, or a group of statements enclosed in braces. The initialization, con­
dition, and increment can be any expressions.

The choice between while and for is arbitrary, based on which seems
clearer. The for is usually appropriate for loopsin which the initialization and
increment are single statements and logically related, since it is more compact
than while and it keeps the loop control statements together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in
reverse order, that is, from 300 degrees to O. 0

is done once, before the loop proper is entered. The second part is the test or
condition that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single
printf) is executed. Then the increment step

fahr = fahr + 20

permissible to use the value of a variable of some type, you can use a more com­
plicated expression of that type. Since the third argument of printf must be
a floating-point value to match the %6. 1f, any floating-point expression can
occur there.

The for statement is a loop, a generalization of the while. If you compare
it to the earlier while, its operation should be clear. Within the parentheses,
there are three parts, separated by semicolons. The first part, the initialization

fahr = 0

CHAPTER 114 A TUTORIAL INTRODUCTION

1.5 Character Input and Output
Weare now going to consider a family of related programs for processing

character data. You will find that many programs are just expanded versionsof
the prototypes that we discuss here.

The model of input and output supported by the standard library is very sim­
ple. Text input or output, regardless of where it originates or where it goes to,
is dealt with as streams of characters, A text stream is a sequence of charac­
ters divided into lines; each line consists of zero or more characters followedby
a newline character. It is the responsibility of the library to make each input or
output stream conform to this model; the C programmer using the library need
not worry about how lines are represented outside the program.

The standard library provides several functions .for reading or writing one
character at a time, of which getchar and putchar are the simplest. Each
time it is called, getchar reads the next input character from a text stream
and returns that as its value. That is, after

c = getchar ()

the variable c contains the next character of input. The characters normally
come from the keyboard; input from files is discussed in Chapter 7.

The function putchar prints a character each time it is called:
putchar(c)

prints the contents of the integer variable c as a character, usually on the
screen. Calls to putchar and printf may be interleaved; the output will

The quantities LOWER,UPPER and STEP are symbolic constants, not variables,
so they do not appear in declarations. Symbolic constant names are convention­
ally written in upper case so they can be readily distinguished from lower case
variable names. Notice that there is no semicolon at the end of a Idefine
line.

}

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf(""3d "6. 1f\n", fahr, (S.0/9.0)*(fahr-32»;

'define LOWER 0 1* lower limit of table *1
'define UPPER 300 1* upper limit *1
'define STEP 20 1* step size *1

1* p:t'intFahrenheit-Celsius table *1
main ()
{

int fahr;

'include <stdio.h>

CHARACTERINPUT ANDOUTPUT 15SECTION 1.S

The relational operator I= means "not equal to."
What appears to be a character on the keyboard or screen is of course, like

everything else, stored internally just as a bit pattern. The·type char is specifi­
cally meant for storing such character data, but any integer type can be used.
We used int for a subtle but important reason.

The problem is distinguishing the end of the input from valid data. The
solution is that getchar returns a distinctive value when there is no more
input, a value that cannot be confused with any real character. This value is
called EOF,for "end of file." We must declare c to be a type big enough to
hold any value that getchar returns. We can't use char since c must be big
enough to hold EOFin addition to any possible char. Therefore we use into

EOF is an integer defined in <stdio. h>, but the specific numeric value
doesn't matter as long as it is not the same as any char value. By using the
symbolic constant, we are assured that nothing in the program depends on the
specific numeric value.

The program for copying would be written more concisely by experienced C
programmers. In C, any assignment, such as

c = qetchar ()

}
}

c = getchar();
while (c 1= EOF) {

putchar(c);
c = getchar ();

int c;

1* copy input to output; 1st version *1
main()
{

#include <stdio.h>

Converting this into C gives

1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful
code without knowing anything more about input and output. The simplest
example is a program that copies its input to its output one character at a time:

read a character
whi 1e (character is not end-of-file indicator)

output the character just read
read a character

appear in the order in which the calls are made.

CHAPTER 116 A TUTORIAL INTRODUCTION

1.5.2 Character Counting

The next program counts characters; it is similar to the copy program.

Exercise 1-7. Write a program to print the value of EOF. 0

Exercise 1-6. Verify that the expression qetchar () I= EOFis 0 or 1. 0

is equivalent to

c = (getchar() 1= EOF)

This has the undesired effect of setting c to 0 or 1, depending on whether or not
the call of qetchar encountered end of file. (More on this in Chapter 2.)

c = getchar() 1= EOF

The while gets a character, assigns it to c, and then tests whether the charac­
ter was the end-of-file signal. If it was not, the body of the while is executed,
printing the character. The while then repeats. When the end of the input is
finally reached, the while terminates and so does main.

This version centralizes the input-there is now only one reference to
qetchar-and shrinks the program. The resulting program is more compact,
and, once the idiom is mastered, easier to read. You'll see this style often. (It's
possible to get carried away and create impenetrable code, however, a tendency
that we will try to curb.)

The parentheses around the assignment within the condition are necessary.
The precedence of I= is higher than that of =, which means that in the absence
of parentheses the relational test I= would be done before the assignment =. So
the statement

}

while «c = getchar(» 1= EOF)
putchar(c);

int c;

1* copy input to output; 2nd version *1
maine)
{

#include <stdio.h>

is an expression and has a value, which is the value of the left hand side after
the assignment. This means that an assignment can appear as part of a larger
expression. If the assignment of a character to c is put inside the test part of a
while loop, the copy program can be written this way:

CHARACTER INPUT AND OUTPUT 17SECTION 1.5

}

printf uses %ffor both float and double; %.Ofsuppresses printing of the
decimal point and the fraction part, which is zero.

The body of this for loop is empty, because all of the work is done in the
test and increment parts. But the grammatical rules of C require that a for
statement have a body. The isolated semicolon,called a null statement, is there

,
printf("%.Of\n", nc);

for (nc = 0; getchar() 1= EOF; ++nc)

double nc;

1* count characters in input; 2nd version *1
main()
{

presents a new operator, ++, which means increment by one. You could instead
write nc = nc+ 1 but ++nc is more concise and often more efficient. There is a
corresponding operator -- to decrement by 1. The operators ++ and -- can be
either prefix operators (++nc) or postfix (nc++); these two forms have dif­
ferent values in expressions, as will be shown in Chapter 2, but ++nc and nc+»
both increment nco For the moment we will stick to the prefix form.

The character counting program accumulates its count in a long variable
instead of an into long integers are at least 32 bits. Although on some
machines, int and long are the same size, on others an int is 16 bits, with a
maximum value of 32767, and it would take relatively little input to overflowan
int counter. The conversion specification %ld tells printf that the
corresponding argument is a long integer.

It may be possible to cope with even bigger numbers by using a double
(double precision float). We will also use a for statement instead of a
while, to illustrate another way to write the loop.

#include <stdio.h>

++nc;

}

The statement

nc = 0;
while (getchar() 1= EOF)

++nc;
printf ("%ld\n", nc l ;

long nc;

1* count characters in input; 1st version *1
main()
{

#include <stdio.h>

CHAPTER 118 A TUTORIAL INTRODUCTION

The body of the while now consists of an if, which in turn controls the
increment ++nl. The if statement tests the parenthesized condition, and if the
condition is true, executes the statement (or group of statements in braces) that
follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for "is equal to" (like Pascal's
single = or Fortran's .EQ.). This symbol is used to distinguish the equality test
from the single = that C uses for assignment. A word of caution: newcomers to
C occasionally write = when they mean ==. As we will see in Chapter 2, the
result is usually a legal expression, so you will get no warning.

A character written between single quotes represents an integer value equal
to the numerical value of the character in the machine's character set. This is
called a character constant, although it is just another way to write a small
integer. So, for example, ' A' is a character constant; in the ASCII character
set its value is 65, the internal representation of the character A. Of course ' A '
is to be preferred over 65: its meaning is obvious, and it is independent of a par­
ticular character set.

The escape sequences used in string constants are also legal in character

}

nl = 0;
while «c = getchar(» 1= EOF)

if (c == ' \n')
++nl;

printf(""d\n", nl);

int c, nl;

1* count lines in input *1
maine)
{

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard
library ensures that an input text stream appears as a sequence of lines, each
terminated by a newline. Hence, counting lines is just counting newlines:

#include <stdio.h>

to satisfy that requirement. We put it on a separate line to make it visible.
Before we leave the character counting program, observe that if the input

contains no characters, the while or for test fails on the very first call to
getchar, and the program produces zero, the right answer. This is important.
One of the nice things about while and for is that they test at the top of the
loop, before proceeding with the body. If there is nothing to do, nothing is done,
even if that means never going through the loop body. Programs should act
intelligently when given zero-length input. The while and for statements
help ensure that programs do reasonable things with boundary conditions.

CHARACTER INPUT AND OUTPUT 19SECTION 1.5

Every time the program encounters the first character of a word, it counts

}
printf ("%d %d "d\n", nl, nw, nc l;
}

}
++nw;

state = OUT;
nl = nw = nc = 0;
while «c = getchar()) 1= EOF) {

++nc;
if (c == '\n')

++nl;
if (c = = ' , I I c == ' \n' I I c = = ' \ t ')

state = OUT;
else if (state == OUT) {

state = IN;

int c, nl, nw, nc, state;

1* count lines, words, and characters in input *1
maine)
{

1* inside a word *1
1* outside a word *1

#define IN 1
#define OUT 0

1.5.4 Word Counting

The fourth in our series of useful programs counts lines, words, and charac­
ters, with the loose definition that a word is any sequence of characters that
does not contain a blank, tab or newline. This is a bare-bones version of the
UNIX program we.

#include <stdio.h>

constants, so ' \n' stands for the value of the newline character, which is 10 in
ASCII. You should note carefully that' \n' is a single character, and in
expressions is Just an integer; on the other hand, "\n" is a string constant that
happens to contain only one character. The topic of strings versus characters is
discussed further in Chapter 2.

Exercise 1..8. Write a program to count blanks, tabs, and newlines. 0

Exercise 1-9. Write a program to copy its input to its output, replacing each
string of one or more blanks by a single blank. 0

Exercise 1-10. Write a program to copy its input to its output, replacing each
tab by \ t, each backspace by \b, and each backslash by \ \. This makes tabs
and backspaces visible in an unambiguous way. 0

CHAPTER 120 A TUTORIAL INTRODUCTION

Exercise 1-12. Write a program that prints its input one word per line. 0

Exercise 1-11. How would you test the word count program? What kinds of
input are most likely to uncover bugs if there are any? 0

One and only one of the two statements associated with an if-else is per­
formed. If the expression is true, statement 1 is executed; if not, statement 2 is
executed. Each statement can be a single statement or several in braces. In the
word count program, the one after the else is an if that controls two state­
ments in braces.

statement 2

if (expression)
statement 1

else

says "if c is a blank or c is a newline or c is a tab". {Recall that the escape
sequence \ t is a visible representation of the tab character.} There is a
corresponding operator && for AND; its precedence is just higher than I I.
Expressions connected by && or I 1 are evaluated left to right, and it is
guaranteed that evaluation will stop as soon as the truth or falsehood is known.
If c is a blank, there is no need to test whether it is a newline or tab, so these
tests are not made. This isn't particularly important here, but is significant in
more complicated situations, as we will soon see.

The example also shows an else, which specifies an alternative action if the
condition part of an if statement is false. The general form is

if (c = = ' , I I c = = ' \.n ' I I c == ' \. t ')

sets all three variables to zero. This is not a special case, but a consequenceof
the fact that an assignment is an expressionwith a value and assignments asso­
ciate from right to left. It's as if we had written

nl = (nw = (nc = 0));

The operator I I means OR, so the line

nl = nw = nc = 0;

one more word. The variable state records whether the program is currently
in a word or not; iriitially it is "not in a word," which is assigned the value OUT.
We prefer the symbolic constants IN and OUT to the literal values 1 and 0
because they make the program more readable. In a program as tiny as this, it
makes little difference, but in larger programs, the increase in clarity is well
worth the modest extra effort to write it this way from the beginning. You'll
also find that it's easier to make extensive changes in programs where magic
numbers appear only as symbolic constants.

The line

CHARACTER INPUT AND OUTPUT 21SECTION 1.5

int ndigit[10];

declares ndiqi t to be an array of 10 integers. Array subscripts always start at
zero in C, so the elements are ndigi t [0], ndigi t [1], ..., ndigi t [9]. This
is reflected in the for loops that initialize and print the array.

A subscript can be any integer expression, which includes integer variables
like i, and integer constants.

This particular program relies on the properties of the character representa­
tion of the digits. For example, the test

}

The output of this program on itself is

digits = 9 3 0 0 0 0 0 0 0 1, white space = 123, other = 345

The declaration

printf("digits =");
for (i = 0; i < 10; ++i)

printf(" %<i", ndigit[i]);
printf(", white space::;%d, other = %d\n",

nwhite, nother);

++nother;

while «c = getchar(» 1= EOF)
if (c >= '0' && c <= '9')

++ndigit[c-'O'];
e1se if (c == ' , I I c == '\n ' I I c == '\t')

++nwhite;
~lse

nwhite = nother = 0;
for (i = 0; i < 10; ++i)

ndigit[i] = 0;

int c, i, nwhite, nother;
int ndigit[10];

1* count digits, white space, others *1
maine)
{

#include <stdio.h~

Let us write a program to count the number of occurrences of each digit, of
white space characters (blank, tab, newline), and of all other characters. This
is artificial, butit permits us to illustrate several aspects of C in one program.

There are twelve categories of input, so it is convenient to use an array to
hold the number of occurrences of each digit, rather than ten individual vari­
ables. Here is one version of the program:

1.6 Arrays

CHAPTER I22 A TUTORIAL INTRODUCTION

groups between the initial if and the final else.
As a matter of style, it is advisable to format this construction as we have

shown; if each if were indented past the previous else, a long sequence of
decisionswould march off the right side of the page.

else if (condition)
statement

occurs frequently in programs as a way to express a multi-way decision. The
conditions are evaluated in order from the top until some condition is satisfied;
at that point the corresponding statement part is executed, and the entire con­
struction is finished. (Any statement can be several statements enclosed in
braces.) If none of the conditions is satisfied, the statement after the final
else is executed if it is present. If the final else and statement are omitted,
as in the word count program, no action takes place. There can be any number
of

else
statement;

The pattern
if (condition 1)

statement ,
else if (conditiony t

statement 2

++nother;

This works only if ' 0', ' 1" ..., ' 9' have consecutive increasing values. For­
tunately, this is true for all character sets.

By definition, chars are just small integers, so char variables and constants
are identical to ints in arithmetic expressions. This is natural and convenient;
for example, c - ' 0' is an integer expression with a value between 0 and 9
corresponding to the character ' 0' to ' 9' stored in c, and is thus a valid sub­
script for the array ndigi t.

The decision as to whether a character is a digit, white space, or something
else is made with the sequence

if (c >= '0' && c <= '9')
++ndigit[c-'O'];

else if (c ==" II c == '\n' II c == '\t')
++nwhite;

else

c - '0'

determines whether the character in c is a digit. If it is, the numeric value of
that digit is

if (c >= ' 0' && c <= ' 9') ...

ARRAYS 23SECTION 1.6

}

for (i = 0; i < 10; ++i)
printf(""d "d %d\n", i, power(2,i), power(-3,i»;

return 0;

int i;

1* test power function *1
main ()
{

int power(int m, int n);

#include <stdio.h>

In C, a function is equivalent to a subroutine or function in Fortran, or a
procedure or function in Pascal. A function provides a convenient way to
encapsulate some computation, which can then be used without worrying about
its implementation. With properly designed functions, it is possible to ignore
how a job is done; knowingwhat is done is sufficient. C makes the use of func­
tions easy, convenient and efficient; you will often see a short function defined
and called only once, just because it clarifies some piece of code.

So far we have used only functions like printf, getchar, and putchar
that have been provided for us; now it's time to write a few of our own. Since C
has no exponentiation operator like the ** of Fortran, let us illustrate the
mechanics of function definition by writing a function power (m,n) to raise an
integer m to a positive integer power n. That is, the value of power (2,5) is
32. This function is not a practical exponentiation routine, since it handles only
positive powers of small integers, but it's good enough for illustration. (The
standard library contains a function pow(x ,y) that computes xY.)

Here is the function power and a main program to exercise it, so you can
see the whole structure at once.

1.7 Functions

The switch statement, to be discussed in Chapter 3, provides another way
to write a multi-way branch that is particularly suitable when the condition is
whether some integer or character expressionmatches one of a set of constants.
For contrast, we will present a switch version of this program in Section 3.4.

Exercise 1-13. Write a program to print a histogram of the lengths of words in
its input. It is easy to draw the histogram with the bars horizontal; a vertical
orientation is more challenging. 0

Exercise 1-14. Write a program to print a histogram of the frequencies of dif­
ferent characters in its input. 0

CHAPTER 124 A TUTORIAL INTRODUCTION

return expression;

declares the parameter types and names, and the type of the result that the
function returns. The names used by power for its parameters are local to
power, and are not visible to any other function: other routines can use the
same names without conflict. This is also true of the variables i and p: the i in
power is unrelated to the i in main.

We will generally use parameter for a variable named in the parenthesized
list in a function definition, and argument for the value used in a call of the
function. The terms formal argument and actual argument are sometimes used
for the same distinction.

The value that power computes is returned to main by the return state­
ment. Any expressionmay follow return:

int power(int base, int n)

Each call passes two arguments to power, which each time returns an integer
to be formatted and printed. In an expression, power (2, i) is an integer just
as 2 and i are. (Not all functions produce an integer value; we will take this
up in Chapter 4.)

The first line of power itself,

printf(""d "d %d\n", i, power(2,i), power(-3,i»;

Function definitions can appear in any order, and in one source file or several,
although no function can be split between files. If the source program appears
in several files, you may have to say more to compile and load it than if it all
appears in one, but that is an operating system matter, not a language attribute.
For the moment, we will assume that both functions are in the same file, so
whatever you have learned about running C programs will still work.

The function power is called twice by main, in the line

}

declarations
statements

return-type function-name (parameter declarations, if any)
{

A function definition has this form:

}

p = 1;
for (i = 1; i <= n; ++i)

p = p * base;
return p;

int i, p;

1* power: raise base to n-th power; n >= 0 *1
int power(int base, int n)
{

FUNCTIONS 2SSECTION 1.7

The parameters are named between the parentheses, and their types are
declared before the opening left brace; undeclared parameters are taken as into
(The body of the function is the same as before.)

The declaration of power at the beginning of the program would have
looked like this:

}

p = 1;
for (i = 1; i <= n; ++i)

p = p * base;
return p;

int i, p;

1* power: raise base to n-th power; n >= 0 *1
1* (old-style version) *1
power (base, n)
int base, n;
{

Well-chosen names are good documentation, however, so we will often use them.

A note of history: The biggest change between ANSI C and earlier versions
is how functions are declared and defined. In the original definition of C, the
power function would have been written like this:

int power(int, int);

just before main says that power is a function that expects two int arguments
and returns an into This declaration, which is called a function prototype, has
to agree with the definition and uses of power. It is an error if the definition
of a function or any uses of it do not agree with its prototype.

Parameter names need not agree. Indeed, parameter names are optional in a
function prototype, so for the prototype we could have written

int power(int m, int n);

A function need not return a value; a return statement with no expression
causes control, but no useful value, to be returned to the caller, as does "falling
off the end" of a function by reaching the terminating right brace. And the cal­
ling function can ignore a value returned by a function.

You may have noticed that there is a return statement at the end of main.
Since main is a function like any other, it may return a value to its caller,
which is in effect the environment in which the program was executed. Typi­
cally, a return value of zero implies normal termination; non-zero values signal
unusual or erroneous termination conditions. In the interests of simplicity, we
have omitted return statements from our main functions up to this point, but
we will include them hereafter, as a reminder that programs should return
status to their environment.

The declaration

CHAPTER I26 A TUTORIAL INTRODUCTION

}

The parameter n is used as a temporary variable, and is counted down (a for
loop that runs backwards) until it becomes zero; there is no longer a need for
the variable i. Whatever is done to n inside power has no effect on the argu­
ment that power was originally called with.

When necessary, it is possible to arrange for a function to modify a variable

for (p = 1; n > 0; --n)
p = p * base;

return p;

int p;

1.8 Arguments-Call by Value
One aspect of C functions may be unfamiliar to programmers who are used

to some other languages, particularly Fortran. In C, all function arguments are
passed "by value." This means that the called function is given the values of its
arguments in temporary variables rather than the originals. This leads to some
different properties than are seen with "call by reference" languages like For­
tran or with var parameters in Pascal, in which the called routine has access to
the original argument, not a local copy.

The main distinction is that in C the called function cannot directly alter a
variable in the calling function; it can only alter its private, temporary copy.

Call by value is an asset, however, not a liability. It usually leads to more
compact programs with fewer extraneous variables, because parameters can be
treated as conveniently initialized local variables in the called routine. For
example, here is a version of power that makes use of this property.

1* power: raise base to n-th power; n>=O; version 2 *1
int power(int base, int n)
{

No parameter list was permitted, so the compiler could not readily check that
power was being called correctly. Indeed, since by default power would have
been assumed to return an int, the entire declaration might well have been
omitted.

The new syntax of function prototypes makes it much easier for a compiler
to detect errors in the number of arguments or their types. The old style of
declaration and definition still works in ANSI C, at least for a transition period,
but we strongly recommend that you use the new form when you have a com­
piler that supports it.

Exercise 1-15. Rewrite the temperature conversion program of Section 1.2 to
use a function for conversion. 0

int power ();

ARGUMENTS-CALL BY VALUE 27SECTION 1.8

This outline makes it clear that the program divides naturally into pieces. One
piece gets a new line, another tests it, another saves it, and the rest controls the
process.

Since things divide so nicely, it would be well to write them that way too.
Accordingly, let us first write a separate function getline to fetch the next
line of input. We will try to make the function useful in other contexts. At the
minimum, getline has to return a signal about possible end of file; a more
useful design would be to return the length of the line, or zero if end of file is
encountered. Zero is an acceptable end-of-file return because it is never a valid
line length. Every text line has at least one character; even a line containing
only a newline has length 1.

When we find a line that is longer than the previous longest line, it must be
saved somewhere. This suggests a second function, copy, to copy the new line
to a safe place.

Finally, we need a main program to control getline and copy. Here is
the result.

while (there's another line)
if (it's longer than the previous longest)

save it
save its length

print longest line

1.9 Character Arrays
The most common type of array in C is the array of characters. To illus­

trate the use of character arrays and functions to manipulate them, let's write a
program that reads a set of text lines and prints the longest. The outline is sim­
ple enough:

in a calling routine. The caller must provide the address of the variable to be
set (technically a pointer to the variable), and the called function must declare
the parameter to be a pointer and access the variable indirectly through it. We
will cover pointers in Chapter 5.

The story is different for arrays. When the name of an array is used as an
argument, the value passed to the function is the location or address of the
beginning of the array-there is no copying of array elements. By subscripting
this value, the function can access and alter any element of the array. This is
the topic of the next section.

CHAPTER 128 A TUTORIAL INTRODUCTION

}

i = 0;
while {(to[i] = from[i]) 1= '\0')

++i;

int i;

1* copy: copy 'from' into 'to'; assume to is big enough *1
void copy{char tor], char from[])
{

}

}
sri] = '\0';
return i;

for (i=O; i<lim-1 && (c=getchar{» I=EOF && cl='\n'; ++i)
sri] = c;

if (c == '\n') {
sri] = c;
++i;

int c, i;

1* getline: read a line into s, return length *1
int getline{char s[], int lim)
{

}

}
if (max> 0) 1* there was a line *1

printf{"%s", longest);
return 0;

max = 0;
while {{len = getline(line, MAXLINE» > 0)

if (len> max) {
max = len;
copy{longest, line);

int len; 1* current line length *1
int max; 1* maximum length seen so far *1
char line[MAXLINE]; 1* current input line *1
char longest[MAXLINE]; 1* longest line saved here *1

1* print longest input line *1
main{)
{

int getline{char line[], int maxline);
void copy{char to[], char from[]);

1* maximum input line size *1
#include <stdio.h>
Idefine MAXLINE 1000

CHARACTER ARRAYS 29SECTION 1.9

Exercise 1-16. Revise the main routine of the longest-line program so it will
correctly print the length of arbitrarily long input lines, and as much as possible
of the text. 0

The %sformat specification in printf expects the corresponding argument to
be a string represented in this form. copy also relies on the fact that its input
argument is terminated by , \0', and it copies this character into the output
argument. (All of this implies that ' \0' is not a part of normal text.)
It is worth mentioning in passing that even a program as small as this one

presents some sticky design problems. For example, what should main do if it
encounters a line which is bigger than its limit? get1ine works safely, in that
it stops collecting when the array is full, even if no newline has been seen. By
testing the length and the last character returned, main can determine whether
the line was too long, and then cope as it wishes. In the interests of brevity, we
have ignored the issue.

There is no way for a user of get1 ine to know in advance how long an
input line might be, so get1 ine checks for overflow. On the other hand, the
user of copy already knows (or can find out) how big the strings are, so we
have chosen not to add error checking to it.

I hie I 1 I 1 I 0 I \n I \0 I

appears in a C program, it is stored as an array of characters containing the
characters of the string and terminated with a ' \0' to mark the end.

"hello\n"

The functions get1ine and copy are declared at the beginning of the pro­
gram, which we assume is contained in one file.

main and get1ine communicate through a pair of arguments and a
returned value. In get1ine, the arguments are declared by the line

int qetline(char s[], int lim)

which specifies that the first argument, s, is an array, and the second, lim, is
an integer. The purpose of supplying the size of an array in a declaration is to
set aside storage. The length of the array s is not necessary in get1ine since
its size is set in main. get1ine uses return to send a value back to the
caller, just as the function power did. This line also declares that getline
returns an int; since int is the default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for
their effect and return no value. The return type of copy is void, which states
explicitly that no value is returned.

getline puts the character ' \0' (the null character, whose value is zero)
at the end of the array it is creating, to mark the end of the string of characters.
This conventionis also used by the C language: when a string constant like

CHAPTER 130 A TUTORIAL INTRODUCTION

The variables in main, such as line, longest, etc., are private or local to
main. Because they are declared within main, no other function can have
direct access to them. The same is true of the variables in other functions; for
example, the variable i in getline is unrelated to the i in copy. Each local
variable in a function comes into existence only when the function is called, and
disappears when the function is exited. This is why such variables are usually
known as automatic variables, following terminology in other languages. We
will use the term automatic henceforth to refer to these local variables.
(Chapter 4 discusses the static storage class, in which local variables do
retain their values between calls.)

Because automatic variables come and go with function invocation, they do
not retain their values from one call to the next, and must be explicitly set upon
each entry. If they are not set, they will contain garbage.

As an alternative to automatic variables, it is possible to define variables that
are external to all functions, that is, variables that can be accessed by name by
any function. (This mechanism is rather like Fortran COMMON or Pascal vari­
ables declared in the outermost block.) Because external variables are globally
accessible, they can be used instead of argument lists to communicate data
between functions. Furthermore, because external variables remain in existence
permanently, rather than appearing and disappearing as functions are called and
exited, they retain their values even after the functions that set them have
returned.

An external variable must be defined, exactly once, outside of any function;
this sets aside storage for it. The variable must also be declared in each func­
tion that wants to access it; this states the type of the variable. The declaration
may be an explicit extern statement or may be implicit from context. To
make the discussionconcrete, let us rewrite the longest-line program with line,
longest, and max as external variables. This requires changing the calls,
declarations, and bodies of all three functions.

1.10 External Variables and Scope

Exercise 1-19. Write a function reverse (s) that reverses the character
string s. Use it to write a program that reverses its input a line at a time. 0

Exercise 1-18. Write a program to remove trailing blanks and tabs from each
line of input, and to delete entirely blank lines. 0

Exercise 1-17. Write a program to print all input lines that are longer than 80
characters. 0

EXTERNAL VARIABLES AND SCOPE 31SECTION 1.10

}

}
line[i] = ' \0' ;
return i;

for (i = 0; i < MAXLINE-1
&& (c=getchar(» 1= EOF && c 1= '\n'; ++i)

line[i] = c;
if (c == '\n') {

line[i] = c;
++i;

int c, i;
extern char line[];

1* getline: specialized version *1
int getline(void)
{

}

}
if (max> 0) 1* there was a line *1

printf(n"s", longest);
return 0;

max = 0;
while «len = getline(» > 0)

if (len> max) {
max = len;
copy();

int len;
extern int max;
extern char longest[];

1* print longest input line; specialized version *1
main ()
{

int getline(void);
void copy(void);

1* maximum length seen so far *1
1* current input line *1
1* longest line saved here *1

int max;
char line[MAXLINE];
char 10ngest[MAXLINE];

1* maximum input line size *1#define MAXLINE 1000

#include <stdio.h>

CHAPTER 132 A TUTORIAL INTRODUCTION

}

The external variables in main,getline, and copy are defined by the
first lines of the example above, which state their type and cause storage to be
allocated for them. Syntactically, external definitions are just like definitions of
local variables, but since they occur outside of functions, the variables are exter­
nal. Before a function can use an external variable, the name of the variable
must be made known to the function. One way to do this is to write an
extern declaration in the function; the declaration is the same as before except
for the added keyword extern.

In certain circumstances, the extern declaration can be omitted. If the
definition of an external variable occurs in the source file before its use in a par­
ticular function, then there is no need for an extern declaration in the func­
tion. The extern declarations in main,getline and copyare thus redun­
dant. In fact, common practice is to place definitions of all external variables at
the beginning of the source file, and then omit all extern declarations.
If the program is in several source files, and a variable is defined in filel

and used in fUe2 and file3, then extern declarations are needed in file2 and
file3 to connect the occurrences of the variable. The usual practice is to collect
extern declarations of variables and functions in a separate file, historically
called a header, that is included by #include at the front of each source file.
The suffix •h is conventional for header names. The functions of the standard
library, for example, are declared in headers like <stdio. h>. This topic is
discussed at length in Chapter 4, and the library itself in Chapter 7 and Appen­
dix B.

Since the specialized versions of getline and copy have no arguments,
logic would suggest that their prototypes at the beginning of the file should be
getline () and copy(). But for compatibility with older C programs the
standard takes an empty list as an old-style declaration, and turns off all argu­
ment list checking; the word void must be used for an explicitly empty list.
We will discuss this further in Chapter 4.

You should note that we are using the words definition and declaration care­
fully when we refer to external variables in this section. "Definition" refers to
the place where the variable is created or assigned storage; "declaration" refers
to places where the nature of the variable is stated but no storage is allocated.

By the way, there is a tendency to make everything in sight an extern vari­
able because it appears to simplify communications-argument lists are short

i = 0;
while « longest[i] = line[i]) 1= '\0')

++i;

int i;
extern char line[], longest[];

1* copy: specialized version *1
void copy(void)
{

EXTERNAL VARIABLES AND SCOPE 33SECTION 1.10

Exercise 1-24. Write a program to check a C program for rudimentary syntax
errors like unbalanced parentheses, brackets and braces. Don't forget about
quotes, both single and double, escape sequences, and comments. (This pro­
gram is hard if you do it in full generality.) 0

Exercise 1-21. Write a program entab that replaces strings of blanks by the
minimum number of tabs and blanks to achieve the same spacing. Use the
same tab stops as for detab. When either a tab or a single blank would suffice
to reach a tab stop, which should be given preference? 0

Exercise 1-22. Write a program to "fold" long input lines into two or more
shorter lines after the last non-blank character that occurs before the n-th
column of input. Make sure your program does something intelligent with very
long lines, and if there are no blanks or tabs before the specified column. 0

Exercise 1-23. Write a program to remove all comments from a C program.
Don't forget to handle quoted strings and character constants properly. C com­
ments do not nest. 0

and variables are always there when you want them. But external variables are
always there even when you don't want them. Relying too heavily on external
variables is fraught with peril since it leads to programs whose data connections
are not at all obvious-variables can be changed in unexpected and even inad­
vertent ways, and the program is hard to modify. The second version of the
longest-line program is inferior to the first, partly for these reasons, and partly
because it destroys the generality of two useful functions by wiring into them
the names of the variables they manipulate.

At this point we have covered what might be called the conventional core of
c. With this handful of building blocks, it's possible to write useful programs
of considerable size, and it would probably be a good idea if you paused long
enough to do so. These exercises suggest programs of somewhat greater com­
plexity than the ones earlier in this chapter.

Exercise 1-20. Write a program detab that replaces tabs in the input with the
proper number of blanks to space to the next tab stop. Assume a fixed set of
tab stops, say every n columns. Should n be a variable or a symbolic parame­
ter? 0

CHAPTER 134 A TUTORIAL INTRODUCTION

35

Although we didn't say so in Chapter 1, there are some restrictions on the
names of variables and symbolic constants. Names are made up of letters and
digits; the first character must be a letter. The underscore" _" counts as a
letter; it is sometimes useful for improving the readability of long variable
names. Don't begin variable names with underscore, however,since library rou­
tines often use such names. Upper case and lower case letters are distinct, so x
and X are two different names. Traditional C practice is to use lower case for
variable names, and all upper case for symbolicconstants.

At least the first 31 characters of an internal name are significant. For
function names and external variables, the number may be less than 31, because
external names may be used by assemblers and loaders over which the language
has no control. For external names, the standard guarantees uniqueness only
for 6 characters and a single case. Keywords like if, else, int, float, etc.,

2.1 Variable Names

Variables and constants are the basic data objects manipulated in a program.
Declarations list the variables to be used, and state what type they have and
perhaps what their initial values are. Operators specify what is to be done to
them. Expressions combine variables and constants to produce new values. The
type of an object determines the set of values it can have and what operations
can be performed on it. These building blocks are the topics of this chapter.

The ANSI standard has made many small changes and additions to basic
types and expressions. There are now signed and unsigned forms of all
integer types, and notations for unsigned constants and hexadecimal character
constants. Floating-point operations may be done in single precision; .there is
also a long double type for extended precision. String constants may be con­
catenated at compile time. Enumerations have become part of the language,
formalizing a feature of long standing. Objects may be declared const, which
prevents them from being changed. The rules for automatic coercions among
arithmetic types have been augmented to handle the richer set of types.

CHAPTER 2: Types, Operators, and Expressions

The word int can be omitted in such declarations, and typically is.
The intent is that short and long should provide different lengths of

integers where practical; int will normally be the natural size for a particular
machine. short is often 16 bits, long 32 bits, and int either 16 or 32 bits.
Each compiler is free to choose appropriate sizes for its own hardware, subject
only to the restriction that shorts and ints are at least 16 bits, longs are at
least 32 bits, and short is no longer than int, which is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer.
unsiqned numbers are always positiveor zero, and obey the laws of arithmetic
modulo 211, where n is the number of bits in the type. So, for instance, if chars
are 8 bits, unsigned char variables have values between 0 and 255, while
siqned chars have values between -128 and 127 (in a two's complement
machine). Whether plain chars are signed or unsigned is machine-dependent,
but printable characters are always positive.

The type long double specifies extended-precision floating point. As with
integers, the sizes of floating-point objects are implementation-defined; float,
double and long double could represent one, two or three distinct sizes.

The standard headers <limits. h> and <float. h> contain symbolic con­
stants for all of these sizes, along with other properties of the machine and com­
piler. These are discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short, int,

short int sh;
long int counter;

2.2 Data Types and Sizes
There are only a few basic data types in C:

char a single byte, capable of holding one character
in the local character set.

int an integer, typically reflecting the natural size
of integers on the host machine.

float single-precisionfloating point.
double double-precision floating point.

In addition, there are a number of qualifiers that can be applied to these
basic types. short and long apply to integers:

are reserved: you can't use them as variable names. They must be in lower
case.

It's wise to choose variable names that are related to the purpose of the vari­
able, and that are unlikely to get mixed up typographically. We tend to use
short' names for local variables, especially loop indices, and longer names for
external variables.

CHAPTER 236 TYPES,OPERATORSAND EXPRESSIONS

1* ASCII vertical tab *1
1* ASCII bell character *1

#define VTAB '\013'
#define BELL '\007'

or, in hexadecimal,

where hh is one or more hexadecimal digits (0 ...9, a ...f, A ..F). SO we might
write

where 000 is one to three octal digits (0...7) or by

'\xhh'

'\000'

An integer constant like 1234 is an into A long constant is written with a
terminal 1(ell) or L, as in 123456789L; an integer too big to fit into an int
will also be taken as a long. Unsigned constants are written with a terminal u
or U,and the suffix ul or ULindicates unsigned long.

Floating-point constants contain a decimal point (123. 4) or an exponent
(1e-2) or both; their type is double, unless suffixed. The suffixes f or F indi­
cate a float constant; 1or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of
decimal. A leading 0 (zero) on an integer constant means octal; a leading Ox
or ox means hexadecimal. For example, decimal 31 can be written as 037 in
octal and Ox1f or OX1Fin hex. Octal and hexadecimal constants may also be
followed by L to make them long and U to make them unsigned: OXFULis
an unsigned long constant with value 15 decimal.

A character constant is an integer, written as one character within single
quotes, such as ' x '. The value of a character constant is the numeric value of
the character in the machine's character set. For example, in the ASCII charac­
ter set the character constant ' 0' has the value 48, which is unrelated to the
numeric value O. If we write ' 0' instead of a numeric value like 48 that
depends on character set, the program is independent of the particular value and
easier to read. Character constants participate in numeric operations just as
any other integers, although they are most often used in comparisons with other
characters.

Certain characters can be represented in character and string constants by
escape sequences like \n (newline); these sequences look like two characters,
but represent only one. In addition, an arbitrary byte-sized bit pattern can be
specified by

2.3 Constants

and long variables, both signed and unsigned, by printing appropriate
values from standard headers and by direct computation. Harder if you com­
pute them: determine the ranges of the various floating-point types. 0

CONSTANTS 37SECTION 2.3

This is useful for splitting long strings across several source lines.
Technically, a string constant is an array of characters. The internal

representation of a string has a null character ' \0' at the end, so the physical
storage required is one more than the number of characters written between the
quotes. This representation means that there is no limit to how long a string
can be, but programs must scan a string completely to determine its length.
The standard library function strlen (s) returns the length of its character

"hello, world"

is equivalent to

"hello," " world"

1* the empty string *1

The quotes are not part of the string, but serve only to delimit it. The same
escape sequences used in character constants apply in strings; \" represents the
double-quote character. String constants can be concatenated at compile time:

""
or

"I am a string"

#define LEAP 1 1* in leap years *1
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

A string constant, or string literal, is a sequence of zero or more characters
surrounded by double quotes, as in

or

The character constant ' \0' represents the character with value zero, the
null character. ' \ 0' is often written instead of 0 to emphasize the character
nature of some expression, but the numeric value is just O.

A constant expression is an expression that involves only constants. Such
expressions may be evaluated during compilation rather than run-time, and
accordingly may be used in any place that a constant can occur, as in

#define MAXLINE 1000
char line[MAXLINE+1];

The complete set of escape sequences is
\a alert (bell) character \\ backslash
\b backspace \? question mark
\f formfeed \' single quote
\n newline \" double ,quote
\r carriage return \000 octal number
\t horizontal tab \xhh hexadecimal number
\v vertical tab

1* ASCII vertical tab *1
1* ASCII bell character *1

#define VTAB '\xb'
#define BELL '\x7'

CHAPTER238 TYPES,OPERATORSAND EXPRESSIONS

Names in different enumerations must be distinct. Values need not be distinct
in the same enumeration.

Enumerations provide a convenient way to associate constant values with
names, an alternative to #define with the advantage that the values can be
generated for you. Although variables of enum types may be declared, com­
pilers need not check that what you store in such a variable is a valid value for
the enumeration. Nevertheless, enumeration variables offer the chance of
checking and so are often better than #defines. In addition, a debugger may
be able to print values of enumeration variables in their symbolic form.

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

1* FEB is 2, MAR is 3, etc. *1

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = '\t',
NEWLINE = '\n', VTAB = '\v', RETURN = '\r' };

The first name in an enum has value 0, the next 1, and so on, unless explicit
values are specified. If not all values are specified, unspecified values continue
the progression from the last specified value, as in the second of these examples:

enum boolean { NO, YES };

strlen and other string functions are declared in the standard header
<string.h>.

Be careful to distinguish between a character constant and a string that con­
tains a single character: ' x' is not the same as "x". The former is an integer,
used to produce the numeric value of the letter x in the machine's character set.
The latter is an array of characters that contains one character (the letter x)
and a '\0'.

There is one other kind of constant, the enumeration constant. An
enumeration is a list of constant integer values, as in

}

i = 0;
whil e (s [i] I= ' \ 0')

++i;
return i;

int i;

1* strlen: return length of s *1
int strlen(char s[])
{

string argument s, excluding the terminal ' \ 0 '. Here is our version:

CONSTANTS 39SECTION 2.3

The result is implementation-defined if an attempt is made to change a const.

int strlen(const char[]);

The const declaration can also be used with array arguments, to indicate that
the function does not change that array:

const double e = 2.71828182845905;
const char msg[] = "warning: ";

If the variable in question is not automatic, the initialization is done once
only, conceptually before the program starts executing, and the initializer must
be a constant expression. An explicitly initialized automatic variable is initial­
ized each time the function or block it is in is entered; the initializer may be any
expression. External and static variables are initialized to zero by default.
Automatic variables for which there is no explicit initializer have undefined
(i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to
specify that its value will not be changed. For an array, the const qualifier
says that the elements will not be altered.

char esc = '\\';
int i = 0;
int limit = MAXLINE+1;
float eps = 1.0e-5;

This latter form takes more space, but is convenient for adding a comment to
each declaration or for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed
by an equals sign and an expression, the expression serves as an initializer, as in

int lower;
int upper;
int step;
char c;
char line[1000];

Variables can be distributed among declarations in any fashion; the lists above
could equally well be written as

int lower, upper, step;
char c, line[1000];

2.4 Declarations
All variables must be declared before use, although certain declarations can

be made implicitly by context. A declaration specifies a type, and contains a
list of one or more variables of that type, as in

CHAPTER 240 TYPES, OPERATORS AND EXPRESSIONS

Relational operators have lower precedence than arithmetic operators, so an
expression like i < 1im-1 is taken as i < (l im-1), as would be expected.

More interesting are the logical operators ss, and 1 I. Expressionsconnected
by &.&. or I I are evaluated left to right, and evaluation stops as soon as the truth
or falsehood of the result is known. Most C programs rely on these properties.
For example, here is a loop from the input function getl ine that we wrote in
Chapter 1:

for (i=O; i<lim-1 && (c=getchar(» 1= '\n' && c 1= EOF; ++i)
s[i] = c;

Before reading a new character it is necessary to check that there is room to
store it in the array s, so the test i < lim-1 must be made first. Moreover, if
this test fails, we must not go on and read another character.

They all have the same precedence. Just below them in precedence are the
equality operators:

-- 1=

<=<>=>

2.6 Relational and Logical Operators
The relational operators are

The % operator cannot be applied to float or double. The direction of trun­
cation for / and the sign of the result for % are machine-dependent for negative
operands, as is the action taken on overflowor underflow.

The binary + and - operators have the same precedence, which is lower than
the precedence of *, /, and %, which is in turn lower than unary + and -.
Arithmetic operators associate left to right.

Table 2-1 at the end of this chapter summarizes precedence and associativity
for all operators.

The binary arithmetic operators are +, -, *, /, and the modulus operator %.
Integer division truncates any fractional part. The expression

x " y
produces the remainder when x is divided by y, and thus is zero when y divides
x exactly. For example, a year is a leap year if it is divisible by 4 but not by
100, except that years divisible by 400 are leap years. Therefore

if «year" 4 == 0 && year" 100 1= 0) :: year % 400 == 0)
printf(lI"d is a leap year\nllt year);

else
printf (11%<1 is not a leap year\n II t year);

2.5 Arithmetic Operators

RELATIONAL AND LOGICAL OPERATORS 41SECTION 2.6

2.7 Type Conversions
When an operator has operands of different types, they are converted to a

common type according to a small number of rules. In general, the only
automatic conversions are those that convert a "narrower" operand into a
"wider" one without losing information, such as converting an integer to floating
point in an expression like f + i. Expressions that don't make sense, like
using a float as a subscript, are disallowed. Expressions that might lose infor­
mation, like assigning a longer integer type to a shorter, or a floating-point type
to an integer, may draw a warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic
expressions. This permits considerable flexibility in certain kinds of character
transformations. One is exemplified by this naive implementation of the func­
tion atoi, which converts a string of digits into its numeric equivalent.

Exercise 2-2. Write a loop equivalent to the for loop above without using &.&.
or II. 0

if (valid == 0)

It's hard to generalize about which form is better. Constructions like Ivalid
read nicely ("if not valid"), but more complicated ones can be hard to under­
stand.

Similarly, it would be unfortunate if c were tested against EOF before
getchar is called; therefore the call and assignment must occur before the
character in c is tested.

The precedence of &.&. is higher than that of I I, and both are lower than
relational and equality operators, so expressions like

i<lim-1 && (c = getchar(» 1= '\n' && c 1= EOF

need no extra parentheses. But since the precedence of I= is higher than
assignment, parentheses are needed in

(c = getchar(» 1= '\n'

to achieve the desired result of assignment to c and then comparison with ' \n ' .
By definition, the numeric value of a relational or logical expression is 1 if

the relation is true, and 0 if the relation is false.
The unary negation operator I converts a non-zero operand into 0, and a

zero operand into 1. A common use of I is in constructions like

if (Ivalid)

rather than

CHAPTER 241 TYPES, OPERATORS AND EXPRESSIONS

can be replaced by
isdigit(c)

We will use the <ctype .h> functions from nowon.
There is one subtle point about the conversionof characters to integers. The

language does not specify whether variables of type char are signed or
unsigned quantities. When a char is converted to an int, can it ever produce
a negative integer? The answer .varies from machine to machine, reflecting

c >= '0' && c <= '9'

}

This works for ASCII because corresponding upper case and lower case letters
are a fixed distance apart as numeric values and each alphabet is contiguous­
there is nothing but letters between A and Z. This latter observation is not true
of the EBCDIC character set, however, so this code would convert more than
just letters in EBCDIC.

The standard header <ctype. h>, described in Appendix B, defines a family
of functions that provide tests and conversionsthat are independent of character
set. For example, the function tolower (c) returns the lower case value of c
if c is upper case, so tolower is a portable replacement for the function
lower shown above. Similarly, the test

return c;

if (c >= 'A' && c <= 'Z')
return c + 'a' - 'A';

else

gives the numeric value of the character stored in s[i],because the values of
, 0 " ' 1" etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which
maps a single character to lower case for the ASCII character set. If the char­
acter is not an upper case letter, lower returns it unchanged.

1* lower: convert c to lower case; ASCII only *1
int lower(int c)
{

}

As we discussed in Chapter 1, the expression
s[i] - '0'

n = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)

n = 10 * n + (s[i] - '0');
return n;

int i, n;

1* atoi: convert s to integer *1
int atoi(char s[])
{

TYPE CONVERSIONS 43SECTION 2.7

sets d to 1 if c is a digit, and 0 if not. However, functions like isdigi t may
return any non-zero value for true. In the test part of if, while, for, etc.,
"true" just means "non-zero," so this makes no difference.

Implicit arithmetic conversions work .much as expected. In general, if an
operator like + or * that takes two operands (a binary operator) has operands of
different types, the "lower" type is promoted to the "higher" type before the
operation proceeds. The result is of the higher type. Section 6 of Appendix A
states the conversion rules precisely. If there are no uns igned operands, how­
ever, the followinginformal set of rules will suffice:

If either operand is long double, convert the other to long double.

Otherwise, if either operand is double, convert the other to double.

Otherwise, if either operand is float, convert the other to float.

Otherwise, convert char and short to into

Then, if either operand is long, convert the other to long.

Notice that floats in an expression are not automatically converted to
double; this is a change from the original definition. In general, mathematical
functions like those in <math. h> will use double precision. The main reason
for using float is to save storage in large arrays, or, less often, to save time on
machines where double-precisionarithmetic is particularly expensive.

Conversion rules are more complicated when uns igned operands are
involved. The problem is that comparisons between signed and unsigned values
are' machine-dependent" because they depend on the sizes of the various integer
types. For example, suppose that int is 16 bits and long is 32 bits. Then
-1L < 1U,because 1U,which is an int, is promoted to a signed long. But
-1L > 1UL,because -1L is promoted to unsigned long and thus appears to
be a large positive number.

Conversions take place across assignments; the value of the right side is con­
verted to the type of the left, which is the type of the result.

d = C >= '0' && c <= '9'

differences in architecture. On some machines a char whose leftmost bit is 1
will be converted to a negative integer ("sign extension"). On others, a char is
promoted to an int by adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machine's standard
printing character set will never be negative, so these characters will always be
positive quantities in expressions. But arbitrary bit patterns stored in 'character
variables may appear to be negative on some machines, yet positive on others.
For portability, specify signed or unsigned if non-character data is to be
stored in char variables.

Relational expressions like .i > j and logical expressions connected by &.&.
and I I are defined to have value 1 if true, and 0 if false. Thus the assignment

CHAPTER244 TYPES,OPERATORSAND EXPRESSIONS

root2 = sqrt(2);

coerces the integer 2 into the double value 2.0 without any need for a cast.

the value of c is unchanged. This is true whether or not sign extension is
involved. Reversing the order of assignments might lose information, however.
If x is float and i is int, then x = i and i = x both cause conversions;

float to int causes truncation of any fractional part. When double is con­
verted to float, whether the value is rounded or truncated is implementation­
dependent.

Since an argument of a function call is an expression, type conversionsalso
take place when arguments are passed to functions. In the absence of a func­
tion prototype, char and short become int, and float becomes double.
This is why we have declared function arguments to be int and double even
when the function is called with char and f loa t.

Finally, explicit type conversions can be forced ("coerced") in any expres­
sion, with a unary operator called a cast. In the construction

(type-name) expression

the expression is converted to the named type by the conversion rules above.
The precise meaning of a cast is as if the expression were assigned to a variable
of the specified type, which is then used in place of the whole construction. For
example, the library routine sqrt expects a double argument, and will pro­
duce nonsense if inadvertently handed something else. (sqrt is declared in
<math •h>.) So if n is an integer, we can use

sqrt«double) n)

to convert the value of n to double before passing it to sqrt. Note that the
cast produces the value of n in the proper type; n itself is not altered. The cast
operator has the same high precedence as other unary operators, as summarized
in the table at the end of this chapter.

If arguments are declared by a function prototype, as they normally should
be, the declaration causes automatic coercion of any arguments when the func­
tion is called. Thus, given a function prototype for sqrt:

double sqrt(double);

the call

i = c;
c = i;

int i;
char c;

A character is converted to an integer, either by sign extension or not, as
described above.

Longer integers are converted to shorter ones or to chars by dropping the
excess high-order bits. Thus in

TYPE CONVERSIONS 4SSECTION 2.7

sets x to 6. In both cases, n becomes 6. The increment and decrement opera­
tors can only be applied to variables; an expression like (i +j)+ + is illegal.

x = ++n;

sets x to 5, but

x = n++;

The unusual aspect is that ++ and -- may be used either as prefix operators
(before the variable, as in ++n), or postfix (after the variable: n++). In both
cases, the effect is to increment n. But the expression +-n increments n before
its value is used, while n« + increments n after its value has been used. This
means that in a context where the value is being used, not just the effect, ++n
and n++ are different. If n is 5, then

if (c == ' \n')
++nl;

2.8 Increment and Decrement Operators
C provides two unusual operators for incrementing and decrementing vari­

ables. The increment operator ++ adds 1 to its operand, while the decrement
operator -- subtracts 1. We have frequently used ++ to increment variables, as
in

Exercise 2·3. Write the function htoi (s), which converts a string of hexa­
decimal digits (including an optional Ox or ox) into its equivalent integer value.
The allowable digits are 0 through 9, a through f, and A through F. 0

}
next = seed;

1* srand: set seed for rand() *1
void srand(unsigned int seed)
{

}

next = next * 1103515245 + 1234S;
return (unsigned int)(next/65536) " 32768;

1* rand: return pseudo-random integer on 0..32767 *1
int rand(void)
{

unsigned long int next = 1;

The standard library includes a portable implementation of a pseudo-random
number generator and a function for initializing the seed; the former illustrates
a cast:

CHAPTER 246 TYPES, OPERATORS AND EXPRESSIONS

As a third example, consider the standard function strcat (s, t), which
concatenates the string t to the end of the string s. strcat assumes that
there is enough space in s to hold the combination. As we have written it,
strcat returns no value; the standard library version returns a pointer to the
resulting string.

if (c == ' \n')
s[i++] = c;

by the more compact

if (c -- '\n') {
s[i] = c;
++i;

}

Another example of a similar construction comes from the get! ine func­
tion that we wrote in Chapter 1, where we can replace

if (s[i] 1= c) {
s[j] = s[i];
j++;

}

Each time a non-e occurs, it is copied into the current j position, and only then
is j incremented to be ready for the next character. This is exactly equivalent
to

}

for (i = j = 0; s[i] 1= '\0'; i++)
if (s[i] 1 = c)

s[j++] = s[i];
s[j] = '\0';

int i, j;

1* squeeze: delete all c from s *1
void squeeze(char s[], int c)
{

prefix and postfix are the same. But there are situations where one or the other
is specifically called for. For instance, consider the function squeeze (S, C),
which removes all occurrences of the character c from the string s.

if (c == ' \n')
nl++;

In a context where no value is wanted, just the incrementing effect, as in

INCREMENT AND DECREMENT OPERA TORS 47SECTION 2.8

sets to one in x the bits that are set to one in SET_ON.
The bitwise exclusiveOR operator ,. sets a one in each bit position where its

operands have different bits, and zero where they are the same.

2.9 Bitwise Operators
C provides six operators for bit manipulation; these may only be applied to

integral operands, that is, char, short, int, and long, whether signed or
unsigned.

s, bitwise AND
bitwise inclusiveOR
bitwise exclusiveOR

< < left shift
> > right shift

one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits; for
example,

n = n & 0177;

sets to zero all but the low-order 7 bits of n.
The bitwise OR operator. I is used to turn bits on:

x = x I SET_ON; ,

As each character is copied from t to s, the postfix + + is applied to both i and
j to make sure that they are in position for the next pass through the loop.

Exercise 2-4. Write an alternate version of squeeze (s 1,s2) that deletes
each character in s 1 that matches any character in the string s2. 0

Exercise 2-5. Write the function any (s 1, s2), which returns the first location
in the string s 1 where any character from the string s2 occurs, or -1 if s 1
contains no characters from s2. (The standard library function strpbrk does
the same job but returns a pointer to the location.) 0

}

1* copy t *1
i++;

while «s[i++] = t[j++]) 1= '\0')

1* find end of s *1
i = j = 0;
while (s[i] 1= '\0')

int i, j;

1* strcat: concatenate t to end of s; s must be big enough *1
void strcat(char s[], char t[])
{

CHAPTER248 TYPES,OPERATORSAND EXPRESSIONS

Exercise 2-8. Write a function rightrot(x,n) that returns the value of the
integer x rotated to the right by n bit positions. 0

Exercise 2-7. Write a function invert(x,p,n) that returns x with the n bits
that begin at position p inverted (i.e., I changed into 0 and vice versa), leaving
the others unchanged. 0

Exercise 2-6. Write a function setbits(x,p,n,y) that returns x with the n
bits that begin at position p set to the rightmost n bits of y, leaving the other
bits unchanged. 0

The expression x > > (p+ 1-n) moves the desired field to the right end of the
word. - 0 is all l-bits; shifting it left n bit positionswith - 0<<n places zeros in
the rightmost n bits; complementing that with - makes a mask with ones in the
rightmost n bits.

}

1* getbits: get n bits from position p *1
unsigned getbits(unsigned x, int p, int n)
{

return (x » (p+1-n» & -(-0 « n);

sets the last six bits of x to zero. Note that x & - 077 is independent of word
length, and is thus preferable to, for example, x & 0177700, which assumes
that x is a 16-bit quantity. The portable form involves no extra cost, since
- 077 is a constant expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function
getbi ts (x , p ,n) that returns the (right adjusted) n-bit field of x that begins
at position p. We assume that bit position 0 is at the right end and that nand
p are sensible positive values. For example, getbi ts (x, 4 , 3) returns the
three bits in bit positions 4, 3 and 2, right adjusted.

x = x & -077

One must distinguish the bitwise operators & and from the logical opera­
tors && and I I, which imply left-to-right evaluation of a truth value. For
example, if x is I and y is 2, then x & y is zero while x && y is one.

The shift operators « and » perform left and right shifts of their left
operand by the number of bit positions given by the right operand, which must
be positive. Thus x < < 2 shifts the value of x left by two positions, filling
vacated bits with zero; this is equivalent to multiplication by 4. Right shifting
an unsigned quantity always fills vacated bits with zero. Right shifting a
signed quantity will fill with sign bits ("arithmetic shift") on some machines
and with O-bits ("logical shift") on others.

The unary operator - yields the one's complement of an integer; that is, it
converts each I-bit into a O-bitand vice versa. For example,

BITWISE OPERATORS 49SECTION 2.9

Declaring the argument x to be unsigned ensures that when it is right-shifted,
vacated bits will be filled with zeros, not sign bits, regardless of the machine the
program is run on.

Quite apart from conciseness, assignment operators have the advantage that
they correspond better to the way people think. We say "add 2 to i" or

}

for (b = 0; x 1= 0; x »= 1)
if (x s, 01)

b++;
return b;

int b;

1* bitcount: count 1 bits in x *1
int bitcount(unsigned x)
{

As an example, the function bi tcount counts the number of l-bits in its
integer argument.

x = x * (y + 1)

rather than

means
x *= y + 1

expr , op = expr 2

is equivalent to
expr , = iexpr i) op (expr2)

except that expr , is computed only once. Notice the parentheses around expr-:

If expr , and expr 2 are expressions, then

»«"I*+

The operator += is called an assignment operator.
Most binary operators (operators like + that have a left and right operand)

have a corresponding assignment operator op =, where op is one of

in which the variable on the left hand side is repeated immediately on the right,
can be written in the compressed form

i += 2

i = i + 2

2.10 Assignment Operators and Expressions
Expressionssuch as

CHAPTER 250 TYPES, OPERATORS AND EXPRESSIONS

It should be noted that the conditional expression is indeed an expression,
and it can be used wherever any other expression can be. If expr-. and expr3

1* z = max(a, b) *1z = (a > b) ? a : b;

compute in z the maximum of a and b. The conditional expression, written
with the ternary operator "?:", provides an alternate way to write this and
similar constructions. In the expression

expr I ? expr 2 : expr 3

the expression expr 1 is evaluated first. If it is non-zero (true), then the expres­
sion expr-. is evaluated, and that is the value of the conditional expression.
Otherwise expr , is evaluated, and that is the value. Only one of expr- and
expr 3 is evaluated. Thus to set z to the maximum of a and b,

if (a > b)
z = a',

else
z = b;

2.11 Conditional Expressions
The statements

The other assignment operators (+=, -=, etc.) can also occur in expressions,
although this is less frequent.

In all such expressions, the type of an assignment expression is the type of its
left operand, and the value is the value after the assignment.

Exercise 2-9. In a two's complement number system, x &.= (x-1) deletes the
rightmost l-bit in x. Explain why. Use this observation to write a faster ver­
sion of bitcount. 0

"increment i by 2," not "take i, add 2, then put the result back in i." Thus
the expression i += 2 is preferable to i = i +2. In addition, for a complicated
expression like

yyval[yypv[p3+p4] + yypv[p1+p2]] += 2

the assignment operator makes the code easier to understand, since the reader
doesn't have to check painstakingly that two long expressions are indeed the
same, or to wonder why they're not. And an assignment operator may even
help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can
occur in expressions;the most common example is

while «c = getchar(» 1= EOF)

CONDITIONAL EXPRESSIONS 51SECTION 2.11

Table 2-1 summarizes the rules for precedence and associativity of all opera­
tors, including those that we have not yet discussed. Operators on the same line
have the same precedence; rows are in order of decreasing precedence, so, for
example, *, I, and" all have the same precedence, which is higher than that of
binary + and -. The "operator" () refers to function call. The operators ->
and • are used to access members of structures; they will be covered in Chapter
6, along with sizeof (size of an object). Chapter 5 discusses * (indirection
through a pointer) and &. (address of an object), and Chapter 3 discusses the
comma operator.

Note that the precedenceof the bitwise operators &, ''', and I falls below ==
and I=. This implies that bit-testing expressions like

if « x & MASK) == 0) ...

must be fully parenthesized to give proper results.
C, like most languages, does not specify the order in which the operands of

an operator are evaluated. (The exceptions are ss, I I, ?:, and ','.) For
example, in a statement like

2.12 Precedence and Order of Evaluation

Exercise 2-10. Rewrite the function lower, which converts upper case letters
to lower case, with a conditional expression instead of if-else. 0

printf("You have %d item%s.\n",· n, n==1 ? "" : "s");

A newline is printed after every tenth element, and after the n-th. All other
elements are followed by one blank. This might look tricky, but it's more com­
pact than the equivalent if-else. Another good example is

for (i = 0; i < n; i++)
printf(""6d"c", a[i], (i%10==9 :: i==n-1) ? '\n' : ' ');

are of different types, the type of the result is determined by the conversion
rules discussed earlier in this chapter. For example, if f is a float and n is an
int, then the expression

(n > 0) ? f : n

is of type float regardless of whether n is positive.
Parentheses are not necessary around the first expression of a conditional

expression, since the precedence of ?: is very low, just above assignment. They
are advisable anyway, however, since they make the condition part of the
expression easier to see.

The conditional expression often leads to succinct code. For example, this
loop prints n elements of an array, 10 per line, with each column separated by
one blank, and with each line (including the last) terminated by a newline.

CHAPTER 252 TYPES, OPERA TORS AND EXPRESSIONS

The question is whether the subscript is the old value of i or the new.

Function calls, nested assignment statements, and increment and decrement
operators cause "side effects" -some variable is changed as a by-product of the
evaluation of an expression. In any expression involvingside effects, there can
be subtle dependencies on the order in which variables taking part in the expres­
sion are updated. One unhappy situation is typified by the statement

a[i] = i++;

++n;
printf(""d %d\n", n, power(2, n»;

can produce different results with different compilers, depending on whether n
is incremented before power is called. The solution, of course, is to write

1* WRONG *1printf (""d %d\n", ++n, power(2, n»;

x = f() + g();

f may be evaluated before g or vice versa; thus if either f or g alters a variable
on which the other depends, x can depend on the order of evaluation. Inter­
mediate results can be stored in temporary variables to ensure a particular
sequence.

Similarly, the order in which function arguments are evaluated is not speci­
fied, so the statement

Unary +, -, and * have higher precedence than the binary forms.

left to right
right to left
left to right
left to right
left to right
left to right
left to right
Ieit to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

?:
= += -= *= 1= %=&= A= 1= «= »=

I I
I I

&&

ASSOCIATIVITYOPERATORS

() [] ->.. ++ -- + - * s, (type) sizeof
* I "+
« »
< <= > >=
-- 1=
&.

TABLE 2-1. PRECEDENCE AND ASSOCIATIVITYOF OPERATORS

PRECEDENCE AND ORDER OF EVALUATION 53SECTION 2.12

Compilers can interpret this in different ways, and generate different answers
depending on their interpretation. The standard intentionally leaves most such
matters unspecified. When side effects (assignment to variables) take place
within an expression is left to the discretion of the compiler, since the best order
depends strongly on machine architecture. (The standard does specify that all
side effects on arguments take. effect before a function is called, but that would
not help in the call to printf above.)

The moral is that writing code that depends on order of evaluation is a bad
programming practice in any language. Naturally, it is necessary to know what
things to avoid, but if you don't know how they are done on various machines,
you won't be tempted to take advantage of a particular implementation.

CHAPTER 254 TYPES, OPERATORS AND EXPRESSIONS

55

The if -else statement is used to express decisions. Formally, the syntax is
if (expression)

statement 1
else

statement 2

3.2 If-Else

x = 0;
i++;
printf (...);

In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and} are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a
single statement. The braces that surround the statements of a function are one
obvious example; braces around multiple statements after an if, else, while,
or for are another. (Variables can be declared inside any block; we will talk
about this in Chapter 4.) There is no semicolon after the right brace that ends
a block.

An expression such as x = 0 or i++ or printf (...) becomes a statement
when it is followedby a semicolon,as in

3.1 Statements and Blocks

The control-flowstatements of a language specify the order in which compu­
tations are performed. We have already met the most common control-flow
constructions in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

CHAPTER 3: Control Flow

The indentation shows unequivocally what you want, but the compiler doesn't
get the message, and associates the else with the inner if. This kind of bug
can be hard to find; it's a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolonafter z = a in

printf("error -- n is neqative\n");

}

if (n >= 0)
for (i = 0; i < n; i++)

if (s [i] > 0) {
printf("...n);
return i;

The ambiguity is especially pernicious in situations like this:

z = b;

}
else

z = a;

if (n > 0) {
if (a > b)

the else goes with the inner if, as we have shown by indentation. If that isn't
what you want, braces must be used to force the proper association:

if (n > 0)
if (a > b)

z = a;
else

z = b;

Sometimes this is natural and clear; at other times it can be cryptic.
Because the else part of an if-else is optional, there is an ambiguity

when an else is omitted from a nested if sequence. This is resolved by asso­
ciating the else with the closest previous else-less if. For example, in

if (expression 1= 0)

instead of

if (expression)

where the else part is optional. The expression is evaluated; if it is true {that
is, if>expression has a non-zero value}, statement 1 is executed. If it is false
{expression is zero} and if there is an else part, statement 2 is executed
instead.

Since an if simply tests the numeric value of an expression, certain coding
shortcuts are possible. The most obviousis writing

CHAPTER 356 CONTROL FLOW

can be omitted, or it may be used for error checking to catch an "impossible"
condition.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. The elements of v
must be in increasing order. The function returns the position (a number
between 0 and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the
array v. If x is less than the middle value, searching focuses on the lower half
of the table, otherwise on the upper half. In either case, the next step is to com­
pare x to the middle element of the selected half. This process of dividing the
range in two continues until the value is found or the range is empty.

else
statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement asso­
ciated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group in braces.

The last else part handles the "none of the above" or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
statement

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

else if (expression)
statement

The construction

3.3 Else-If

This is because grammatically, a statement follows the if, and an expression
statement like "z = a;" is always terminated by a semicolon.

z = b;

if (a > b)
z = a;

else

ELSE·IF 57SECTION 3.3

Each case is labeled by one or more integer-valued constants or constant expres­
sions. If a case matches the expression value, execution starts at that case. All
case expressions must be different. The case labeled default is executed if
none of the other cases are satisfied. A default is optional; if it isn't there
and if none of the cases match, no action at all takes place. Cases and the
default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit,
white space, and all other characters, using a sequence of if ... else if ...
else. Here is the same program with a switch:

}

switch (expression) {
case const-expr: statements
case const-expr i statements
default : statements

The switch statement is a multi-way decision that tests whether an expres­
sion matches one of a number of constant integer values, and branches accord­
ingly.

3.4 Switch

The fundamental decision is whether x is less than, greater than, or equal to the
middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one
would suffice (at the price of more tests outside). Write a version with only one
test inside the loop and measure the difference in run-time. 0

}
return -1; 1* no match *1
}

low = 0;
high = n - 1;
while (low <= high) {

mid = (low+high) I 2;
if (x < v[mid])

high = mid - 1;
else if (x > v[mid])

low = mid + 1;
else 1* found match *1

return mid;

int low, high, mid;

1* binsearch: find x in v[O] <= v[1] <= ••• <= v[n-1] *1
int binsearch(int x, int v[], int n)
{

CHAPTER358 CONTROL FLOW

The break statement causes an immediate exit from the switch. Because
cases serve just as labels, after the code for one case is done, execution falls
through to the next unless you take explicit action to escape. break and
return are the most common ways to leave a switch. A break statement
can also be used to force an immediate exit from while, for, and do loops, as
will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
several cases to be attached to a single action, as with the digits in this example.
But it also implies that normally each case must end with a break to prevent
falling through to the next. Falling through from one case to another is not
robust, being prone to disintegration when the program is modified. With the
exception of multiple labels for a single computation, fall-throughs should be
used sparingly, and commented.

As a matter of good form, put a break after the last case (the default
here) even though it's logically unnecessary. Some day when another case gets
added at the end, this bit of defensiveprogramming will save you.

}

printf("digits =");
for (i = 0; i < 10; i++)

printf(n %dn, ndigit[i]);
print~(n, whit:espace = %d, other = %d\n",

nwhite, nother);
return 0;

}
}

case '\n':
case '\t':

nwhite++;
break;

default:
nother++;
break;

, '.case

nwhite = nother = 0;
for (i = 0; i < 10; i++)

ndigit[i] = 0;
while «c = getchar(» 1= EOF) {

switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':

ndigit[c-'O']++;
bre_k;

main() 1* count digits, white space, others *1
{

int c, i, nwhite, nother, ndigit[10];

#include <stdio.h>

SWITCH 59SECTION 3.4

is an "infinite" loop, presumably to be broken by other means, such as a break
or return.

Whether to use while or for is largely a. matter of personal preference.
For example, in

while «c. getchar(» ==" II e == '\n' II c == '\t')
I. skip white space characters .1

there is no initialization or re-initialization, so the while is most natural.
The for is preferable when there is a simple initialization and increment,

since it keeps the loop control statements close together and visible at the top of

}

}

except for the behavior of continue, which is described in Section 3.7.
Grammatically, the three components of a for loop are expressions. Most

commonly, expr 1 and expr 3 are assignments or function calls and expr 2 is a
relational expression. Any of the three parts can be omitted, although the semi­
colons must remain. If expr , or expr, isomitted, it is simply dropped from the
expansion. If the test, expr 2, is not present, it is taken as permanently true, so

for (;;) {

expr i ;

while (expr2) {
statement
expr3;

is equivalent to

for (exprl; exprs ; expr c)
statement

the expression is evaluated. If it is non-zero, statement is executed and expres­
sion is re-evaluated. This cycle continues until expression becomes zero, at
which point execution resumes after statement.

The for statement

3.5 Loops-While and For
We have already encountered the while and for loops. In

while (expression)
statement

Exercise 3-2. Write a function escape (s, t) that converts characters like
newline and tab into visible escape sequences like \n and \ t as it copies the
string t to s. Use a switch. Write a function for the other direction as well,
converting escape sequences into the real characters. 0

CHAPTER 360 CONTROL FLOW

}

The standard library provides a more elaborate function strtol for conversion
of strings to long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious
when there are several nested loops. The following function is a Shell sort for
sorting an array of integers. The basic idea of this sorting algorithm, which was

sign = (s[i] == #_#) ? -1 : 1;
if (s[i] =- #+# I I s[i] == #_#) 1* skip sign *1

i++;
for (n - 0; isdigit(s[i]); i++)

n = 10 * n + (s[i] - #0#);
return sign * n;

for (i = 0; isspace(s[i]); i++) 1* skip white space *1

int i, n, sign;

1* atoi: convert s to integer; version 2 *1
int atoi(char s[])
{

which is the C idiom for processing the first n elements of an array, the analog
of the Fortran DOloop or the Pascal for. The analogy is not perfect, however,
since the index and limit of a C for loop can be altered from within the loop,
and the index variable i retains its value when the loop terminates for any rea­
son. Because the components of the for are arbitrary expressions, for loops
are not restricted to arithmetic progressions. Nonetheless, it is bad style to
force unrelated computations into the initialization and increment of a for,
which are better reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string
to its numeric equivalent. This one is slightly more general than the one in
Chapter 2; it copes with optional leading white space and an optional + or -
sign. (Chapter 4 shows atof, which does the same conversion for floating­
point numbers.)

The structure of the program reflects the form of the input:
skip white space, if any
get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The
whole process terminates on the first character that could not be part of a
number.

#include <ctype.h>

the loop. This is most obvious in
for (i = 0; i < n; i++)

LOOPS- WHILEAND FOR 61SECTION 3.S

}
}

for (i = 0, j = strlen(s)-1; i < j; i++, j--) {
c = s[i];
8[1] = s[j];
s[j] = c;

int e, i, j;

1* reverse: reverse string s in place *1
void reverse(char s[])
{

#include <string.h>

There are three nested loops. The outermost controls the gap between com­
pared elements, shrinking it from n/2 by a factor of two each pass until it
becomes zero. The middle loop steps along the elements. The innermost loop
compares each pair of elements that is separated by gap and reverses any that
are out of order. Since gap is eventually reduced to one, all elements are even­
tually ordered correctly. Notice how the generality of the for makes the outer
loop fit the same form as the others, even though it is not an arithmetic progres­
sion.

One final C operator is the comma " , ", which most often finds use in the
for statement. A pair of expressionsseparated by a comma is evaluated left to
right, and the type and value of the result are the type and value of the right
operand. Thus in a for statement, it is possible to place multiple expressionsin
the various parts, for example to process.two indices in parallel. This is illus­
trated in the function reverse (s),which reverses the string s in place.

}
}

for (gap = n/2; gap> 0; gap 1= 2)
for (i = gap; i < n; i++)

for (j=i-gap; j>=O && v[j]>v[j+gap]; j-=gap) {
temp = v[j];
v[j] = v[j+gap];
v[j+gap] = temp;

int gap, i, j, temp;

I. shellsort: sort v[0] ...v[n-1] into increasing order *1
void shellsort(int v[], int n)
{

invented in 1959 by D. 1.. Shell, is that in early stages, far-apart elements are
compared, rather than adjacent ones as in simpler interchange sorts. This tends
to eliminate large amounts of disorder quickly, so later stages have less work to
do. The interval between compared elements is gradually decreased to one, at
which point the sort effectively becomes an adjacent interchange method.

CHAPTER 362 CONTROL FLOW

The statement is executed, then expression is evaluated. If it is true, statement
is evaluated again, and so on. When the expression becomes false, the loop ter­
minates. Except for the sense of the test, do-while is equivalent to the Pascal
repeat-until statement.

Experience shows that do-while is much less used than while and for.
Nonetheless, from time to time it is valuable, as in the following function i toa,
which converts a number to a character string (the inverse of atoi). The job
is slightly more complicated than might be thought at first, because the easy
methods of generating the digits generate them in the wrong order. We have
chosen to generate the string backwards, then reverse it.

statement
whi 1e (expression) ;

do

3.6 Loops-Do-whlle
As we discussed in Chapter 1, the while and for loops test the termination

condition at the top. By contrast, the third loop in C, the do-while, tests at
the bottom after making each pass through the loop body; the body is always
executed at least once.

The syntax of the do is

Exercise 3-3. Write a function expand (s 1, s2) that expands shorthand nota­
tions like a- z in the string s 1 into the equivalent complete list abc... xyz in
s2. Allow for letters of either case and digits, and be prepared to handle cases
like a-b-c and a-zO-9 and -a-z. Arrange that a leading or trailing - is
taken literally. 0

for (i = 0, j = strlen(s)-1; i < j; i++, j--)
C = s[i], s[i] = s[j], s[j] = c;

The commas that separate function arguments, variables in declarations, etc.,
are not comma operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for
constructs strongly related to each other, as in the for loop in reverse, and in
macros where a multistep computation has to be a single expression. A comma
expression might also be appropriate for the exchange of elements in reverse,
where the exchange can be thought of as a single operation:

LooPS-OO-WHILE 63SECTION 3.6

It is sometimes convenient to be able to exit from a loop other than by test­
ing at the top or bottom. The break statement provides an early exit from
for, while, and do, just as from switch. A break causes the innermost
enclosing loop or switch to be exited immediately.

The following function, trim, removes trailing blanks, tabs, and newlines
from the end of a string, using a break to exit from a loop when the rightmost
non-blank, non-tab, non-newline is found.

3.7 Break and Continue

Exercise 3-6. Write a version of i toa that accepts three arguments instead of
two. The third argument is a minimum field width; the converted number must
be padded with blanks on the left if necessary to make it wide enough. 0

Exercise 3-5. Write the function i tob (n, s ,b) that converts the integer n
into a base b character representation in the string s. In particular,
i tob (n,s, 16) formats n as a hexadecimal integer in s. 0

Exercise 3-4. In a two's complement number representation, our version of
i toa does not handle the largest negative number, that is, the value of n equal
to _(2wordsize-l). Explain why not. Modify it to print that value correctly,
regardless of the machine on which it runs. 0

The do-while is necessary, or at least convenient, since at least one character
must be installed in the array s, even if n is zero. We also used braces around
the single statement that makes up the body of the do-while, even though
they are unnecessary, so the hasty reader will not mistake the while part for
the beginning of a whi1e loop.

}

if «sign = n) < 0) 1* record sign *1
n = -n; 1* make n positive *1

i = 0;
do { 1* generate digits in reverse order *1

s[i++] = n % 10 + '0'; 1* get next digit *1
} while «n 1= 10) > 0); 1* delete it *1
if (sign < 0)

s[i++] = '-';
s[i] = '\0';
reverse(s);

int i, sign;

1* itoa: convert n to characters in s *1
void itoa(int n, char s[])
{

CHAPTER 364 CONTROL FLOW

3.8 Goto and Labels
C provides the infinitely-abusable goto statement, and labels to branch to.

Formally, the goto is never necessary, and in practice it is almost always easy
to write code without it. We have not used goto in this book.

Nevertheless, there are a few situations where gotos may find a place. The
most common is to abandon processing in some deeply nested structure, such as
breaking out of two or more loops at once. The break statement cannot be
used directly since it only exits from the innermost loop. Thus:

The continue statement is often used when the part of the loop that followsis
complicated, so that reversing a test and indenting another level would nest the
program too deeply.

}

for (i = 0; i < n; i++) {
if (a[i] < 0) 1* skip negative elements *1

continue;
1* do positive elements *1

strlen returns the length of the string. The for loop starts at the end and
scans backwards looking for the first character that is not a blank or tab or
newline. The loop is broken when one is found, or when n becomes negative
(that is, when the entire string has been scanned). You should verify that this
is correct behavior even when the string is empty or contains only white space
characters.

The continue statement is related to break, but less often used; it causes
the next iteration of the enclosing for, while, or do loop to begin. In the
while and do, this means that the test part is executed immediately; in the
for, control passes to the increment step. The continue statement applies
only to loops, not to switch. A continue inside a switch inside a loop
causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in
the array a; negative values are skipped.

}

for (n = strlen(s)-1; n >= 0; n--)
if (s[n] I= ' , && s[n] I= ' \ t' && s[n] I= ' \n')

break;
s[n+1] = '\0';
return n;

int n;

1* trim: remove trailing blanks, tabs, newlines *1
int trim(char s[])
{

GOTO AND LABELS 65SECTION 3.8

With a few exceptions like those cited here, code that relies on qoto state­
ments is generally harder to understand and to maintain than code without
qotos. Although we are not dogmatic about the matter, it does seem that
qoto statements should be used rarely, if at all.

else
1* didn't find any common element *1

1* got one: a[i-1] == b[j-1] *1
if (found)

found = 0;
for (i = 0; i < n && Ifound; i++)

for (j = 0; j < m && Ifound; j++)
if (a[i] == b[j])

found = 1;

Code involvinga qoto can always be written without one, though perhaps at
the price of some repeated tests or an extra variable. For example, the array
search becomes

found:
1* got one: a[i] == b[j] *1

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)

if (a[i] == b[j])
goto found;

1* didn't find any common element *1

error:
clean up the mess

This organization is handy if the error-handling code is non-trivial, and if errors
can occur in several places.

A label has the same form as a variable name, and is followedby a colon. It
can be attached to any statement in the same function as the qoto. The scope
of a label is the entire function.

As another example, consider the problem of determining whether two
arrays a and b have an element in common. One possibility is

}

if (disaster)
goto error;

for (...)
for (...) {

CHAPTER 366 CONTROL FLOW

67

4.1 Basicsof Functions
To begin, let us design and write a program to print each line of its input

that contains a particular "pattern" or string of characters. (This is a special
case of the UNIX program grep.) for example, searching for the pattern of

Functions break large computing tasks into smaller ones, and enable people
to build on what others have done instead of starting over from scratch.
Appropriate functions hide details of operation from parts of the program that
don't need to know about them, thus clarifying the whole, and easing the pain of
making changes.

C has been designed to make functions efficient and easy to use; C programs
generally consist of many small functions rather than a few big ones. A pro­
gram may reside in one or more source files. Source files may be compiled
separately and loaded together, along with previously compiled functions from
libraries. We will not go into that process here, however, since the details vary
from system to system.

Function declaration and.definition is the area where the ANSI standard has
made the most visible changes to C. As we saw first in Chapter 1, it is now
possible to declare the types of arguments when a function is declared. The
syntax of function definition also changes, so that declarations and definitions
match. This makes it possible for a compiler to detect many more errors than it
could before. Furthermore, when arguments are properly declared, appropriate
type coercions are performed automatically.

The standard clarifies the rules on the scope of names; in particular, it
requires that there be only one definition of each external object. Initialization
is more general: automatic arrays and structures may now be initialized.

The C preprocessor has also been enhanced. New preprocessor facilities
include a more complete set of conditional compilation directives, a way to
create quoted strings from macro arguments, and better control over the macro
expansion process.

CHAPTER 4: Functions and Program Structure

Although it's certainly possible to put the code for all of this in main, a
better way is to use the structure to advantage by making each part a separate
function. Three small pieces are easier to deal with than one big one, because
irrelevant details can be buried in the functions, and the chance of unwanted
interactions is minimized. And the pieces may even be useful in other pro­
grams.

"While there's another line" is getline, a function that we wrote in
Chapter 1, and "print it" is printf, which someone has already provided for
us. This means we need only write a routine to decide whether the line contains
an occurrence of the pattern.

We can solve that problem by writing a function strindex (s , t) that
returns the position or index in the string s where the string t begins;. or -1 if
s doesn't contain t. Because C arrays begin at position zero, indexes will be
zero or positive, and so a negative value like -1 is convenient for signaling
failure. When we later need more sophisticated pattern matching, we only have
to replace strindex; the rest of the code cart remain the same. (The standard
library provides a function strstr that is similar to strindex, except that it
returns a pointer instead of an index.)

Given this much design, filling in the details of the program is straightfor­
ward. Here is the whole thing, so you can see how the pieces fit together. For
now, the pattern to be searched for is a literal string, which is not the most gen­
eral of mechanisms. We will return shortly to a discussion of how to initialize
character arrays, and in Chapter 5 will show how to make the pattern a param­
eter that is set when the program is run. There is also a slightly different.ver­
sion of getline; you might find it instructive to compare it to the one in
Chapter 1.

while (there's another line)
if (the line contains the pattern)

print it

The job falls neatly into three pieces:

Ah Lovel could you and I with Fate conspire
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire I

will produce the output

Ah Lovel could you and I with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire I

letters "ould"in the set of lines

CHAPTER 468 FUNCTIONS AND PROGRAM STRUCTURE

}

Each function definition has the form

}
return -1;

;
if (k > 0 && t[k] == '\0')

return i;

for (i = 0; s[i] 1= '\0'; i++) {
for (j=i, k=O; t[k]I='\O' && s[j]==t[k]; j++, k++)

int i, j, k;

1* strindex: return index of t in s, -1 if none *1
int strindex(char s[], char t[])
{

}

i = 0;
while (--lim> 0 && (c=getchar(» 1= EOF && c 1= '\n')

s[i++] = c;
if (c == ' \n')

s[i++] = c;
s[i] = '\0';
return i;

int c, i;

1* getline: get line into s, return length *1
int getline(char s[], int lim)
{

}

}
return found;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {

printf("%s", line);
found++;

char line[MAXLINE];
int found = 0;

1* find all lines matching pattern *1
main()
{

1* pattern to search for *1char pattern[] = "ould";

int getline(char line[], int max);
int strindex(char source[], char searchfor[]);

1* maximum input line length *1
#include <stdio.h>
#define MAXLINE 1000

BASICS OF FUNCTIONS 69SECTION 4.1

cc main.c qetline.o strindex.o

The cc command uses the " •c" versus " .0" naming convention to distinguish

compiles the three files, placing the resulting object code in files main.0,
qetline.o, and strindex. 0, then loads them all into an executable file
called a. out. If there is an error, say in main.c, that file can be recompiled
by itself and the result loaded with the previousobject files, with the command

cc main.c getline.c strindex.c

The expression will be converted to the return type of the function if necessary.
Parentheses are often used around the expression, but they are optional.

The calling function is free to ignore the returned value. Furthermore, there
need be no expression after return; in that case, no value is returned to the
caller. Control also returns to the caller with no value when execution "falls off
the end" of the function by reaching the closing right brace. It is .not illegal,
but probably a sign of trouble, if a function returns a value from one place and
no value from another. In any case, if a function fails to return a value, its
"value" is certain to be garbage.

The pattern-searching program returns a status from main,the number of
matches found. This value is available for use by the environment that called
the program.

The mechanics of how to compile and load a C program that resides on mul­
tiple source files vary from one system to the next. On the UNIX system, for
example, the cc command mentioned in Chapter 1 does the job. Suppose that
the three functions are stored in three files called main.c, qetline. c, and
strindex. c. Then the command

return expression;

Various parts may be absent; a minimal function is
dummy() {}

which does nothing and returns nothing. A do-nothing function like this is
sometimes useful as a place holder during program development. If the return
type is omitted, int is assumed.

A program is just a set of definitions of variables and functions. Communi­
cation between the functions is by arguments and values returned by the func­
tions, and through external variables. The functions can occur in any order in
the source file, and the source program can be split into multiple files, so long
as no function is split.

The returh statement is the mechanism for returning a value from the
called function to its caller. Any expressioncan follow return:

}
declarations and statements

return-type function-name (argument declarations)
{

CHAPTER470 FUNCTIONSAND PROGRAMSTRUCTURE

Second, and just as important, the calling routine must know that atof
returns a non-int value. One way to ensure this is to declare atof explicitly

}
return sign * val I power;
}

power *= 10.0;

i++;
for (power = 1.0; isdigit(s[i]); i++) {

val = 10.0 * val + (s[i] - '0');

if (s[i] == '.')

sign = (s[i] == '-') ? -1 : 1;
if (s[i] == '+' I I sri] == '-')

i++;
for (val = 0.0; isdigit(s[i]); i++)

val = 10.0 * val + (s[i] - '0');

for (i = 0; isspace(s[i]); i++) 1* skip white space *1

1* atof: convert string s to double *1
double atof(char s[])
{

double val, power;
int i, sign;

4.2 Functions Returning Non-Integers
So far our examples of functions have returned either no value (void) or an

into What if a function must return some other type? Many numerical func­
tions like sqrt, sin, and cos return double; other specialized functions
return other types. To illustrate how to deal with this, let us write and use the
function atof (s), which converts the string s to its double-precision floating­
point equivalent. atof is an extension of atoi, which we showedversionsof in
Chapters 2 and 3. It handles an optional sign and decimal point, and the pres­
ence or absence of either integer part or fractional part. Our version is not a
high-quality input conversion routine; that would take more space than we care
to use. The standard library includes an atof; the header <stdlib. h>
declares it.

First, atof itself must declare the type of value it returns, since it is not
into The type name precedes the function name:

#include <ctype.h>

source files from object files.

Exercise 4-1. Write the function strrindex (s, t), which returns the position
of the rightmost occurrence of t in s, or - 1 if there is none. 0

FUNCTIONS RETURNING NON-INTEGERS 71SECTION 4.2

double atof();

that too is taken to mean that nothing is to be assumed about the arguments of
atof; all parameter checking is turned off. This special meaning of the empty

}

The declaration
double sum, atof(char []);

says that sumis a double variable, and that atof is a function that takes one
char [] argument and returns a double.

The function atof must be declared and defined consistently. If atof
itself and the call to it in main have inconsistent types in the same source file,
the error will be detected by the compiler. But if (as is more likely) atof were
compiled separately, the mismatch would not be detected, atof would return a
double that main would treat as an int, and meaningless answers would
result.

In the light of what we have said about how declarations must match defini­
tions, this might seem surprising. The reason a mismatch can happen is that if
there is no function prototype, a function is implicitly declared by its first
appearance in an expression, such as

sum += atof(line)

If a name that has .not been previously declared occurs in an expression and is
followed by a left parenthesis, it is declared by context to be a function name,
the function is assumed to return an int, and nothing is assumed about its
arguments. Furthermore, if a function declaration does not include arguments,
as in

sum = 0;
while (qetline(line, MAXLINE) > 0)

printf("\t"q\n", sum += atof(line»;
return 0;

double sum, atof(char []);
char line[MAXLINE];
int qetline(char liner], int max);

1* rudimentary calculator *1
main()
{

#define MAXLINE 100

in the calling routine. The declaration is shown in this primitive calculator
(barely adequate for check-book balancing), which reads one number per line,
optionally preceded by a sign, and adds them up, printing the running sum after
each input:

#include <stdio.h>

CHAPTER471 FUNCTIONSAND PROGRAMSTRUCTURE

A C program consists of a set of external objects, which are either variables
or functions. The adjective "external" is used in contrast to "internal," which
describes the arguments and variables defined inside functions. External vari­
ables are defined outside of any function, and are thus potentially available to
many functions. Functions themselves are always external, because C does not
allow functions to be defined inside other functions. By default, external vari­
ables and functions have the property that all references to them by the same
name, even from functions compiled separately, are references to the same
thing. (The standard calls this property external linkage.) In this sense, exter­
nal variables are analogous to Fortran COMMON blocks or variables in the
outermost block in Pascal. We will see later how to define external variables
and functions that are visible only within a single source file.

4.3 External Variables

Exercise 4-2. Extend atof to handle scientific notation of the form
123.45e-6

where a floating-point number may be followed by e or E and an optionally
signed exponent. 0

is converted to the type of the function before the return is taken. Therefore,
the value of atof, a double, is converted automatically to int when it
appears in this return, since the function atoi returns an into This opera­
tion does potentially discard information, however, so some compilers warn of it.
The cast states explicitly that the operation is intended, and suppresses any
warning.

return expression;

Notice the structure of the declarations and the return statement. The value
of the expression in

}
return (int) atof(s);

double atof(char s[]);

1* atoi: convert string s to integer using atof *1
int atoi(char s[])
{

argument list is intended to permit older C programs to compile with new com­
pilers. But it's a bad idea to use it with new programs. If the function takes
arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write atoi (convert a string to
int) in terms of it:

EXTERNAL VARIABLES 73SECTION 4.3

Parentheses are not needed; the notation is unambiguous as long as we know
howmany operands each operator expects.

The implementation is simple. Each operand is pushed onto a stack; when
an operator arrives, the proper number of operands (two for binary operators) is
popped, the operator is applied to them, and the result is pushed back onto the
stack. In the example above, for instance, 1 and 2 are pushed, then replaced by
their difference, -1. Next, 4 and 5 are pushed and then replaced by their sum,
9. The product of -1 and 9, which is -9, replaces them on the stack. The
value on the top of the stack is popped and printed when the end of the input
line is encountered.

The structure of the program is thus a loop that performs the proper opera­
tion on each operator and operand as it appears:

1 2 - 45+ *

is entered as

(1 - 2) * (4 + 5)

Because external variables are globally accessible, they provide an alternative
to function arguments and return values for communicating data between func­
tions. Any function may access an external variable by referring to it by name,
if the name has been declared somehow.
If a large number of variables must be shared among functions, external

variables are more convenient and efficient than long argument lists. As
pointed out in Chapter 1, however, this reasoning should be applied with some
caution, for it can have a bad effect on program structure, and lead to programs
with too many data connections between functions.

External variables are also useful because of their greater scope and lifetime.
Automatic variables are internal to a function; they come into existence when
the function is entered, and disappear when it is left. External variables, on the
other hand, are permanent, so they retain values from one function invocation to
the next. Thus if two functions must share some data, yet neither calls the
other, it is often most convenient if the shared data is kept in external variables
rather than passed in and out via arguments.

Let us examine this issue further with a larger example. The problem is to
write a calculator program that provides the operators +, -, *, and I. Because
it is easier to implement, the calculator will use reverse Polish notation instead
of infix. (Reverse Polish is used by some pocket calculators, and in languages
like Forth and Postscript.)

In reverse Polish notation, each operator follows its operands; an infix
expression like

CHAPTER474 FUNCTIONSAND PROGRAMSTRUCTURE

Later we will discuss how this might be split into two or more source files.
The function main is a loop containing a big switch on the type of opera­

tor or operand; this is a more typical use of swi tch than the one shown in Sec­
tion 3.4.

routines called by getop

int getop (char s []) { ... }

external variables for push and pop

void push(double f) { ... }
double pop(void) { ... }

function declarations for main

main() { ... }

'includes
.'defines

The operations of pushing and popping a stack are trivial, but by the time
error detection and recovery are added, they are long enough that it is better to
put each in a separate function than to repeat the code throughout the whole
program. And there should be a separate function for fetching the next input
operator or operand.

The main design decision that has not yet been discussed is where the stack
is, that is, which routines access it directly. One possibility is to keep it in
main, and pass the stack and the current stack position to the routines that
push and pop it. But main doesn't need to know about the variables that con­
trol the stack; it only does push and pop operations. So we have decided to
store the stack and its associated information in external variables accessible to
the push and pop functions but not to main.

Translating this outline into code is easy enough. If for now we think of the
program as existing in one source file, it will look like this:

error

while (next operator or operand is not end-of-file indicator)
if (number)

push it
else if (operator)

pop operands
do operation
push result

else if (newline)
pop and print top of stack

else

EXTERNAL VARIABLES 75SECTION 4.3

}

}
return 0;

}

printf(nerror: zero divisor\nn);
break;

case '\n':
printf (n\t".8g\nn, pop ());
break;

default:
printf(nerror: unknown command "s\nn, s);
break;

while «type = getop(s» 1= EOF) {
switch (type) {
case NUMBER:

push(atof(s»;
break;

case '+' :
push(pop() + pope»~;
break;

case '*':
push(pop() * pope»~;
break;

case '-':
op2 = pop();
push (pop () - op2);
break;

case 'I':
op2 = pop();
if (op2 1= 0.0)

push(pop() lop2);
else

int type;
double op2;'
char s[MAXOP];

1* reverse Polish calculator *1
maine)
{

int getop(char []);
void push(double);
double pop(void);

1* max size of operand or operator *1
1* signal that a number was found *1

#define MAXOP 100
#define NUMBER '0'

1* for atof() *1
#include <stdio.h>
#include <stdlib.h>

CHAPTER 476 FUNCTIONS AND PROGRAM STRUCTURE

A variable is external if it is defined outside of any function. Thus the stack
and stack index that must be shared by push and pop are defined outside of
these functions. But main itself does not refer to the stack or stack position­
the representation can be hidden.

Let us now turn to the implementation of getop, the function that fetches
the next operator or operand. The task is easy. Skip blanks and tabs. If the
next character is not a digit or a decimal point, return it. Otherwise, collect a
string of digits (which might include a decimal point), and return NUMBER, the
signal that a number has been collected.

}
}

if (sp > 0)
return val[--sp];

else {
printf("error: stack empty\n");
return 0.0;

1* pop: pop and return top value from stack *1
double pop(void)
{

}
printf("error: stack full, can't push "9'\n",f);

if (sp < MAXVAL)
val[sp++] = f;

else

1* push: push f onto value stack *1
void push(double f)
{

1* next free stack position *1
1* value stack *1

int sp = 0;
double val[MAXVAL];

1* maximum depth of val stack *1#define MAXVAL 100

the order in which the two calls of pop are evaluated is not defined. To
guarantee the right order, it is necessary to pop the first value into a temporary
variable as we did in main.

push(pop() - pOp(»;

Because + and * are commutative operators, the order in which the popped
operands are combined is irrelevant, but for - and / the left and right operands
must be distinguished. In

EXTERNAL VARIABLES 77SECTION 4.3

What are getch and ungetch? It is often the case that a program cannot
determine that it has read enough input until it has read too much. One
instance is collecting the characters that make up a number: until the first non­
digit is seen, the number is not complete. But then the program has read one
character too far, a character that it is not prepared for.

The problem would be solved if it were possible to "un-read" the unwanted
character. Then, every time the program reads one character too many, it could
push it back on the input, so the rest of the code could behave as if it had never
been read. Fortunately, it's easy to simulate un-getting a character, by writing
a pair of cooperating functions. getch delivers the next input character to be
considered; ungetch remembers the characters put back on the input, so that
subsequent calls to getch will return them before reading new input.

How they work together is simple. unqecch puts the pushed-back charac­
ters into a shared buffer-a character array. getch reads from the buffer if
there is anything there, and calls getc~ar if the buffer is empty. There must
also be an index variable that records the Position of the current character in
the buffer.

Since the buffer and the index are shared by getch and ungetch and
must retain their values between calls, they must be external to both routines.
Thus we can write getch, ungetch, and their shared variables as:

}

,
s[i] = '\0';
if (c 1= EOF)

ungetch(c);
return NUMBER;

,
if (c == '.') 1* collect fraction part *1

while (isdigit(s[++i] = c = getch()})

8[1] = '\0';
if (Iisdigit(c) && c 1= '.')

return c; 1* not a number *1
i = 0;
if (isdigit(c» 1* collect integer part *1

while (isdigit(s[++i] = c = getch(»)

c == '\t'), , I I
I Iwhile «s[O] = c = getch(» --

int i, c;

1* getop: get next operator or numeric operand *1
int getop(char s[])
{

int getch(void);
void ungetch(int);

#include <ctype.h>

CHAPTER 478 FUNCTIONS AND PROGRAM STRUCTURE

Exercise 4-5. Add access to library functions like sin, exp, and pow. See
<math •h> in Appendix B, Section 4. 0

Exercise 4-6. Add commands for handling variables. (It's easy to provide
twenty-six variables with single-letter names.) Add a variable for the most
recently printed value. 0

Exercise 4-7. Write a routine ungets (s) that will push back an entire string
onto the input. Should ungets know about buf and bufp, or should it just
use ungetch? 0

Exercise 4-8. Suppose that there will never be more than one character of
pushback. Modify getch and ungetch accordingly. 0

Exercise 4-9. Our getch and ungetch do not handle a pushed-back EOF
correctly. Decide what their properties ought to be if an EOFis pushed back,
then implement your design. 0

Exercise 4-10. An alternate organization uses getline to read an entire input
line; this makes getch and ungetch unnecessary. Revise the calculator to use
this approach. 0

The standard library includes a function ungetc that provides one character of
push back; we will discuss it in Chapter 7. We have used an array for the push­
back, rather than a single character, to illustrate a more general approach.

Exercise 4-3. Given the basic framework, it's straightforward to extend the cal­
culator. Add the modulus (%) operator and provisions for negative numbers. 0

Exercise 4-4. Add commands to print the top element of the stack without pop­
ping, to duplicate it, and to swap the top two elements. Add a command to
clear the stack. 0

}

void ungetch(int c) I. push character back on input .1
{

if (bufp >= BUFSIZE)
printf("ungetch: too many characters\n");

else
buf[bufp++] = c;

}
return (bufp > 0) ? buf[--bufp] : getchar();

int getch(void) I. get a (possibly pushed back) character .1
{

I. buffer for ungetch .1
I. next free position in buf .1

char buf[BUFSIZE];
int bufp = 0;

#define BUFSIZE 100

EXTERNAL VARIABLES 79SECTION 4.3

int sp;
double val[MAXVAL];

appear outside of any function, they define the external variables sp and val,

double pop(void) { ...}

then the variables sp and val may be used in push and pop simply by nam­
ing them; no further declarations are needed. But these names are not visible in
main, nor are push and pop themselves.

On the other hand, if an external variable is to be referred to before it is
defined, or if it is defined in a different source file from the one where it is
being used, then an extern declaration is mandatory.

It is important to distinguish between the declaration of an external variable
and its definition. A declaration announces the properties of a variable (pri­
marily its type); a definition also causes storage to be set aside. If the lines

void push (double f) { ... }

int sp = 0;
double val[MAXVAL];

4.4 Scope Rules
The functions and external variables that make up a C program need not all

be compiled at the same time; the source text of the program may be kept in
several files, and previously compiled routines may be loaded from libraries.
Among the questions of interest are

• How are declarations written so that variables are properly declared during
compilation?

• How are declarations arranged so;that all the pieces will be properly con­
nected when the program is loaded?

• How are declarations organized so there is only one copy?
• How are external variables initialized?

Let us discuss these topics by reorganizing the calculator program into several
files. As a practical matter, the calculator is too small to be worth splitting, but
it is a fine illustration of the issues that arise in larger programs.

The scope of a name is the part of the program within which the name can
be used. For an automatic variable declared at the beginning of a function, the
scope is the function in which the name is declared. Local variables of the same
name in different functions are unrelated. The same is true of the parameters
of the function, which are in effect local variables.

The scope of an external variable or a function lasts from the point at which
it is declared to the end of the file being compiled. For example, if main, sp,
val, push, and pop are defined in one file, in the order shown above, that is,

main() { ...}

CHAPTER 480 FUNCTIONS AND PROGRAM STRUCTURE

Let us now consider dividing the calculator program into several source files,
as it might be if each of the components were substantially bigger. The main
function would go in one file, which we will call main.c; push, pop,and their
variables go into a second file, stack. c; getop goes into a third, getop. c.
Finally, getch and ungetch go into a fourth file, getch. c;we separate them
from the others because they would come from a separately-compiled library in
a realistic program.

4.5 Header Flies

Infile2:
int sp = 0;
double val [MAXVAL] ;

Because the extern declarations in file} lie ahead of and outside the function
definitions, they apply to all functions; one set of declarations suffices for all of
file}. This same organization would also be needed if the definitions of sp and
val followed their use in one file.

double pop (void) { ...}

void push(double f) { }

extern int sp;
extern double vall];

extern int sp;
extern double vall];

declare for the rest of the source file that sp is an int and that val is a
double array (whose size is determined elsewhere), but they do not create the
variables or reserve storage for them.

There must be only one definition of an external variable among all the files
that make up the source program; other files may contain extern declarations
to access it. (There may also be extern declarations in the file containing the
definition') Array sizes must be specified with the definition, but are optional
with an extern declaration.

Initialization of an external variable goes only with the definition.
Although it is not a likely organization for this program, the functions push

and pop could be defined in one file, and the variables val and sp defined and
initialized in another. Then these definitions and declarations would be neces­
sary to tie them together:

Infilel:

cause storage to be set aside, and also serve as the declaration for the rest of
that source file. On the other hand, the lines

HEADER FILES 81SECTION 4.5

There is a tradeoff between the desire that each file have access only to the
information it needs for its job and the practical reality that it is harder to
maintain more header files. Up to some moderate program size, it is probably
best to have one header file that contains everything that is to be shared
between any two parts of the program; that is the decisionwe made here. For a
much larger program, more organization and more headers would be needed.

double pop(void)

void ungetch(int)

'include <stdio.h>
#define BUFSIZE 100
char buf[BUFSIZE];
int bufp = 0;
int getchtvoid)

getch.c:

'include <stdio.h>
'include "calc.h"
#define MAXVAL 100
int sp = 0;
double val[MAXVAL];
void push(double) {

#include <stdio.h>
#include <ctype.h>
'include "calc.h"
getop()

getop.c: stack.c:

#define NUMBER '0'
void push(double);
double pop(void);
int getop(char []);
int getch(void);
void ungetch(int);

calc.h:

}

#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
#define MAXOP 100
main() {

main.c:

There is one more thing to worry about-the definitions and declarations
shared among the files. As much as possible,we want to centralize this, so that
there is only one copy to get right and keep right as the program evolves.
Accordingly, we will place this common material in a header file, calc. h,
which will be included as necessary. (The #include line is described in Sec­
tion 4.11.) The resulting program then looks like this:

CHAPTER 482 FUNCTIONS AND PROGRAM STRUCTURE

4.7 RegisterVariables
A register declaration advises the compiler that the variable in question

will be heavily used. The idea is that register variables are to be placed in
machine registers, which may result in smaller and faster programs. But com­
pilers are free to ignore the advice.

The register declaration looks like

Exercise 4-11. Modify getop so that it doesn't need to use ungetch. Hint:
use an internal static variable. 0

void ungetch (int c) { ...}

then no other routine will be able to access buf and bufp, and those names
will not conflict with the same names in other files of the same program. In the
same way, the variables that push and pop use for stack manipulation can be
hidden, by declaring sp and val to be static.

The external static declaration is most often used for variables, but it can
be applied to functions as well. Normally, function names are global, visible to
any part of the entire program. If a function is declared static, however, its
name is invisible outside of the file in which it is declared.

The static declaration can also be applied to internal variables. Internal
static variables are local to a particular function just as automatic variables
are, but unlike automatics, they remain in existence rather than coming and
going each time the function is activated. This means that internal static
variables provide private, permanent storage within a single function.

int getch (void) { ...}

1* buffer for ungetch *1
1* next free position in buf *1

static char buf[BUFSIZE];
static int bufp = 0;

The variables sp and val in stack. c, and buf and bufp in getch. c,
are for the private use of the functions in their respective source files, and are
not meant to be accessed by anything else. The static declaration, applied to
an external variable or function, limits the scope of that object to the rest of the
source file being compiled. External static thus provides a way to hide
names like buf and bufp in the getch-ungetch combination, which must be
external so they can be shared, yet which should not be visible to users of
getch and ungetch.

Static storage is specified by prefixing the normal declaration with the word
static. If the two routines and the two variables are compiled in one file, as
in

4.6 Static Variables

REGISTER VARIABLES 83SECTION 4.7

the scope of the variable i is the "true" branch of the if; this i is unrelated to
any i outside the block. An automatic variable declared and initialized in a
block is initialized each time the block is entered. A static variable is initial­
ized only the first time the block is entered.

Automatic variables, including formal parameters, also hide external vari­
ables and functions of the same name. Given the declarations

if (n > 0) {
int i; 1* declare a new i *1

for (i = 0; i < n; i++)

}

C is not a block-structured language in the sense of Pascal or similar
languages, because functions may not be defined within other functions. On the
other hand, variables can be defined in a block-structured fashion within a func­
tion. Declarations of variables (including initializations) may follow the left
brace that introduces any compound statement, not just the one that begins a
function. Variables declared in this way hide any identically named variables in
outer blocks, and remain in existence until the matching right brace. For exam­
ple, in

4.8 Block Structure

In practice, there are restrictions on register variables, reflecting the realities
of underlying hardware. Only a few variables in each function may be kept in
registers, and only certain types are allowed. Excess register declarations are
harmless, however, since the word register is ignored for excessor disallowed
declarations. And it is not possible to take the address of a register variable (a
topic to be covered in Chapter 5), regardless of whether the variable is actually
placed in a register. The specific restrictions on number and types of register
variables vary from machine to machine.

}

register int i;

f{register unsigned m, register long n)
{

and so on. The register declaration can only be applied to automatic vari­
ables and to the formal parameters of a function. In this latter case, it looks
like

register int X;
register char c;

CHAPTER 484 FUNCTIONS AND PROGRAM STRUCTURE

instead of

}

int low = 0;
int high = n - 1;
int mid;

int binsearch(int x, int v[], int n)
{

int x = 1;
char squote = '\";
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

For external and static variables, the initializer must be a constant expression;
the initialization is done once, conceptually before the program begins execution.
For automatic and register variables, it is done each time the function or block
is entered.

For automatic and register variables, the initializer is not restricted to being
a constant: it may be any expression involving previously defined values, even
function calls. For example, the initializations of the binary search program in
Section 3.3 could be written as

Initialization has been mentioned in passing many times so far, but always
peripherally to some other topic. This section summarizes some of the rules,
now that we have discussed the various storage classes.

In the absence of explicit initialization, external and static variables are
guaranteed to be initialized to zero; automatic and register variables have unde­
fined (i.e., garbage) initial values.

Scalar variables may be initialized when they are defined, by following the
name with an equals sign and an expression:

4.9 Initialization

then within the function f, occurrences of x refer to' the parameter, which is a
double; outside of f, they refer to the external into The same is true of the
variable y.

As a matter of style, it's best to avoid variable names that conceal names in
an outer scope; the potential for confusion and error is too great.

}

double y;

f(double x)
{

int X;
int y;

INITIALIZATION 85SECTION 4.9

C functions may be used recursively; that is, a function may call itself either
directly or indirectly. Consider printing a number as a character string. As we
mentioned before, the digits are generated in the wrong order: low-order digits
are available before high-order digits, but they have to be printed the other way
around.

There are two solutions to this problem. One is to store the digits in an
array as they are generated, then print them in the reverse order, as we did with
i toa in Section 3.6. The alternative is a recursive solution, in which printd
first calls itself to cope with any leading digits, then prints the trailing digit.
Again, this version can fail on the largest negative number.

4.10 Recursion

In this case, the array size is five (four characters plus the terminating , \ 0').

char pattern[] = { '0', 'u', '1', 'd', '\0' };

is a shorthand for the longer but equivalent

char pattern [] = "ould";

When the size of the array is omitted, the compiler will compute the length by
counting the initializers, of which there are 12 in this case.

If there are fewer initializers for an array than the number specified, the
missing elements will be zero for external, static, and automatic variables. It is
an error to have too many initializers. There is no way to specify repetition of
an initializer,' nor to initialize an element in the middle of an array without sup-
plying all the preceding values as well. '

Character arrays are a special case of initialization; a string may be used
instead of the braces and commas notation:

int days [] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

In effect, initializations of automatic variables are just shorthand for assignment
statements. Which form to prefer is largely a matter of taste. We have gen­
erally used explicit assignments, because initializers in declarations are harder to
see and further away from the point of use.

An array may be initialized by following its declaration with a list of initial­
izers enclosed in braces and separated by commas. For example, to initialize an
array days with the number of days in each month:

low = 0;
high = n - 1;

int low, high, mid;

CHAPTER486 FUNCTIONS AND PROGRAM STRUCTURE

We moved the swapping operation into a separate function swapbecause it
occurs three times in qsort.

if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */

swap(v, left, (left + right)/2); /* move partition elem */
last = left; /* to v[O] */
for (i = left+1; i <= right; i++) /* partition */

if (v[i] < v[left])
swap(v, ++last, i);

swap(v, left, last); /* restore partition elem */
qsort(v, left, last-1);
qsort(v, last+1, right);

/* qsort: sort v[left] ...v[right] into increasing order */
void qsort(int v[], int left, int right)
(

int i, last;
void swap(int v[], int i, int j);

When a function calls itself recursively, each invocation gets a fresh set of all
the automatic variables, independent of the previous set. Thus in
printd (123) the first printd receives the argument n = 123. It passes 12
to a second printd, which in tum passes 1 to a third. The third-levelprintd
prints 1, then returns to the second level. That printd prints 2, then returns
to the first level. That one prints 3 and terminates.

Another good example of recursion is quicksort, a sorting algorithm
developed by C. A. R. Hoare in 1962. Given an array, one element is chosen
and the others are partitioned into two subsets-those less than the partition ele­
ment and those greater than or equal to it. The same process is then applied
recursively to the two subsets. When a subset has fewer than two elements, it
doesn't need any sorting; this stops the recursion.

Our version of quicksort is not the fastest possible, but it's one of the sim­
plest. We use the middle element of each subarray for partitioning.

if (n / 10)
printd(n / 10);

putchar(n % 10 + '0');

putchar('-');
n = -n;

if (n < 0) (

/* printd: print n in decimal */
void printd(int n)
{

linclude <stdio.h>

RECURSION 87SECTION 4.10

#include «filename»

is replaced by the contents of the file filename. If the filename is quoted,
searching for the file typically begins where the source program was found; if it
is not found there, or if the name is enclosed in < and >, searching follows an
implementation-defined rule to find the file. An included file may itself contain

or

4~11.1 File Inclusion

File inclusion makes it easy to handle collections of #def ines and declara­
tions (among other things). Any source line of the form

#include "filename"

4.11 The C Preprocessor
C provides certain language facilities by means of a preprocessor, which is

conceptually a separate first step in compilation. The two most frequently used
features are #include, to include the contents of a file during compilation,
and #define, to replace a token by an arbitrary sequence of characters. Other
features described in this section include conditional compilation and macros
with arguments.

}

The standard library includes a version of qsort that can sort objects of any
type.

Recursion may provide no saving in storage, since somewhere a stack of the
values being processedmust be maintained. Nor will it be faster. But recursive
code is more compact, and often much easier to write and understand than the
non-recursive equivalent. Recursion is especially convenient for recursively
defined data structures like trees; we will see a nice example in Section 6.5.

Exercise 4-12. Adapt the ideas of printd to write a recursive version of i toa;
that is, convert an integer into a string by calling a recursive routine. 0

Exercise 4-13. Write a recursive version of the function reverse (s), which
reverses the string s in place. 0

temp = v[i];
v[i] = v[j];
v[j] = temp;

int temp;

1* swap: interchange v[i] and v[j] *1
void swap(int v[], int i, int j)
{

CHAPTER 488 FUNCTIONS AND PROGRAM STRUCTURE

will be replaced by the line
x = «p+q) > (r+s) ? (p+q) : (r+s»;

So long as the arguments are treated consistently, this macro will serve for any

x = max(p+q, r+s);

defines a new word, forever, for an infinite loop.
It is also possible to define macros with arguments, so the replacement text

can be different for different calls of the macro. As an example, define a macro
called max:

#define max(A, B) «A) > (B) ? (A) : (B»

Although it looks like a function call, a use of max expands into in-line code.
Each occurrence of a formal parameter (here A or B) will be replaced by the
corresponding actual argument. Thus the line

1* infinite loop *1#define forever for (;;)

It calls for a macro substitution of the simplest kind-subsequent occurrences of
the token name will be replaced by the replacement text. The name in a
#define has the same form as a variable name; the replacement text is arbi­
trary. Normally the replacement text is the rest of the line, but a long defini­
tion may be continued onto several lines by placing a \ at the end of each line
to be continued. The scope of a name defined with #define is from its point
of definition to the end of the source file being compiled. A definition may use
previous definitions. Substitutions are made only for tokens, and do not take
place within quoted strings. For example, if YESis a defined name, there would
be no substitution in printf ("YES") or in YESMAN.

Any name may be defined with any replacement text. For example,

#define name replacement text

4. 11.2 Macro Substitution

A definition has the form

#include lines.
There are often several #include lines at the beginning of a source file, to

include common #define statements and extern declarations, or to access
the function prototype declarations for library functions from headers like
<stdio. h>. (Strictly speaking, these need not be files; the details of how
headers are accessed are implementation-dependent.)

#include is the preferred way to tie the declarations together for a large
program. It guarantees that all the source files will be supplied with the same
definitions and variable declarations, and thus eliminates a particularly nasty
kind of bug. Naturally, when an included file is changed, all files that depend
on it must be recompiled.

THE C PREPROCESSOR 89SECTION 4.11

and the strings are concatenated, so the effect is

J?rintf("x/y = "g\n", x/y);

Within the actual argument, each " is replaced by v" and each \ by \ \, so the
result is a legal string constant.

The preprocessor operator ## provides a way to concatenate actual argu­
ments during macro expansion. If a parameter in the replacement text is adja­
cent to a ##, the parameter is replaced by the actual argument, the ## and sur­
rounding white space are removed, and the result is re-scanned. For example,
the macro paste concatenates its two arguments:

int getchar (void) { ...}

Formal parameters are not replaced within quoted strings. If, however, a
parameter name is preceded by a # in the replacement text, the combination
will be expanded into a quoted string with the parameter replaced by the actual
argument. This can be combined with string concatenation to make, for exam­
ple, a debugging print macro:

#define dprint(expr) printf(#expr" = ~\n", expr)

When this is invoked, as in
dprint (x/y);

the macro is expanded into

printf("x/y" " = "g\n", x/y);

is invoked as square (z + 1).
Nonetheless, macros are valuable. One practical example comes from

<stdio. h>, in which getchar and putchar are often defined as macros to
avoid the run-time overhead of a function call per character processed. The
functions in <ctype. h> are also usually implemented as macros.

Names may be undefined with #unde£, usually to ensure that a routine is
really a function, not a macro:

#undef getchar

/* WRONG */#define square(x) x * x

will increment the larger value twice. Some care also has to be taken with
parentheses to make sure the order of evaluation is preserved; consider what
happens when the macro

/* WRONG */max(i++, j++)

data type; there is' no need for different kinds of max for different data types, as
there would be with functions.
If you examine the expansion of max, you will notice some pitfalls. The

expressions are evaluated twice; this is bad if they involve side effects like incre­
ment operators or input and output. For instance,

CHAPTER 490 FUNCTIONS AND PROGRAM STRUCTURE

The #ifdef and #ifndef lines are specialized forms that test whether a

The first inclusion of hdr. h defines the name HDR;subsequent inclusions will
find the name defined and skip down to the #e~dif. A similar style can be
used to avoid including files multiple times. If this style is used consistently,
then each header can itself include any other headers on which it depends,
without the user of the header having to deal with the interdependence.

This sequence tests the name SYSTEM to decide which version of a header to
include:

#if SYSTEM == SYSV
#define HDR "sysv.h"

#elif SYSTEM == BSD
#define HDR "bsd.h"

#elif SYSTEM == MSDOS
#define HDR "msdos.h"

#else
#define HDR "default.h"

#endif
#include HDR

#endif

1* contents of hdr.h go here *1

4. 11.3 Conditional Inclusion

It is possible to control preprocessing itself with conditional statements that
are evaluated during preprocessing. This provides a way to include code selec­
tively, depending on the value of conditions evaluated during compilation.

The #if line evaluates a constant integer expression (which may not include
sizeof, casts, or enumconstants). If the expression is non-zero, subsequent
lines until an #endif or #elif or #else are included. (The preprocessor
statement #elif is like else if.) The expressiondefined(name) in a #if
is 1 if the name has been defined, and 0 otherwise.

For example, to make sure that the contents of a file hdr. h are included
only once, the contents of the file are surrounded with a conditional like this:

#if Idefined(HDR)
#define HDR

#define paste(front, back) front ## back

so paste (name, 1) creates the token name1.
The rules for nested uses of ## are arcane; further details may be found in

Appendix A.

Exercise 4-14. Define a macro swap(t,x,y) that interchanges two arguments
of type t. (Block structure will help.) 0

THE C PREPROCESSOR 91SECTION 4.11

#endif

1* contents of hdr.h go here .1

name is defined. The first example of #if above could have been written
#ifndef HDR
#define HDR

CHAPTER 492 FUNCTIONS AND PROGRAM STRUCTURE

93

The unary operator &. gives the address of an object, so the statement

5. 1 Pointers and Addresses
Let us begin with a simplified picture of how memory is organized. A typi­

cal machine has an array of consecutivelynumbered or addressed memory cells
that may bemanipulated individually or in contiguous groups. One common
situation is that any byte can be a char, a pair of one-byte cells can be treated
as a short integer, and four adjacent bytes form a long. A pointer is a group
of cells (often two or four) that can hold an address. So if c is a char and p is
a pointer that points to it, we could represent the situation this way:

A pointer is a variable that contains the address of a variable. Pointers are
much used in C, partly ,because they are sometimes the only way to express a
computation, and partly because they usually lead to more compact and effi­
cient code than can be obtained in other ways. Pointers and arrays are closely
related; this chapter also explores this relationship and shows how to exploit it.

Pointers have been lumped with the goto statement as a marvelous way to
create impossible-to-understand programs. This is certainly true when they are
used carelessly, and it is easy to create pointers that point somewhere unex­
pected. With discipline, however, pointers can also be used to achieve clarity
and simplicity. This is the aspect that we will try to illustrate.

The main change in ANSI C is to make explicit the rules about how pointers
can be manipulated, in effect mandating what good programmers already prac­
tice and good compilers already enforce. In addition, the type void * (pointer
to void) replaces char * as the proper type for a generic pointer.

CHAPTER 5: Pointers and Arrays

increments what ip points to, as do

increments *ip by 10.
The unary operators * and & bind more tightly than arithmetic operators, so

the assignment
y = *ip + 1

takes whatever ip points at, adds 1, and assigns the result to y, while

says that in an expression *dpand atof (s) have values of type double, and
that the argument of atof is a pointer to char.

You should also note the implication that a pointer is constrained to point to
a particular kind of object: every pointer points to a specific data type. (There
is one exception: a "pointer to void" is used to hold any type of pointer but
cannot be dereferenced itself. We'll come back to it in Section 5.11.)
If ip points to the integer x, then *ip can occur in any context where x

could, so

is intended as a mnemonic; it says that the expression *ip is an into The syn­
tax of the declaration for a variable mimics the syntax of expressions in which
the variable might appear. This reasoning applies to function declarations as
well. For example,

double *dp, atof(char *);

int dp;

The declarations of x, y, and z are what we've seen all along. The declaration
of the pointer ip,

ip = &.x; 1* ip now points to x *1
y = *ip; 1* y is now 1 *1
ip = 0; 1 x is now 0 *1
ip = &.z[O]; 1* ip now points to z[O] *1

p = &.c;

assigns the address of c to the variable p, and p is said to "point to" c. The &
operator only applies to objects in memory: variables and array elements. It
cannot be applied to expressions,constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when
applied to a pointer, it accesses the object the pointer points to. Suppose that x
and yare integers and ip is a pointer to into This artificial sequence shows
how to declare a pointer and how to use & and *:

int x = 1, y = 2, z[10];
int *ip; 1* ip is a pointer to int *1

CHAPTER 594 POINTERSAND ARRAYS

Since the operator &produces the address of a variable, &a is a pointer to a. In
swap itself, the parameters are declared to be pointers, and the operands are
accessed indirectly through them.

swap(&'a,&'b);

Because of call by value, swap can't affect the arguments a and b in the rou­
tine that called it. The function above only swaps copies of a and b.

The way to obtain the desired effect is for the calling program to pass
pointers to the values to be changed:

temp = x;
x = y;
y = temp;

int temp;

void swap(int x, int y) 1* WRONG *1
{

where the swap function is defined as

swap(a, b);

5.2 Pointers and Function Arguments
Since C passes arguments to functions by value, there is no direct way for

the called function to alter a variable in the calling function. For instance, a
sorting routine might exchange two out-of-order elements with a function called
swap. It is not enough to write

copies the contents of ip into iq, thus making iq point to whatever ip pointed
to.

iq = ip

The parentheses are necessary in this last example; without them, the expression
would increment ip instead of what it points to, because unary operators like *
and ++ associate right to left.

Finally, since pointers are variables, they can be used without dereferencing.
For example, if iq is another pointer to int,

(dp)++

and

POINTERSAND FUNCTIONARGUMENTS 95SECTION 5.2

Each call sets array[n] to the next integer found in the input and increments
n. Notice that it is essential to pass the address of array[n] to getint.
Otherwise there is no way for getint to communicate the converted integer
back to the caller.

Our version of getint returns EOF for end of file, zero if the next input is
not a number, and a positivevalue if the input contains a valid number.

for (n = 0; n < SIZE && getint(&array[n]) 1= EOF; n++)

Pointer arguments enable a function to access and change objects in the
function that called it. As an example, consider a function getint that per­
forms free-format input conversion by breaking a stream of characters into
integer values, one integer per call. getint has to return the value it found
and also signal end of file when there is no more input. These values have to be
passed back by separate paths, for no matter what value is used for EOF, that
could also be the value of an input integer.

One solution is to have getint return the end of file status as its function
value, while using a pointer argument to store the converted integer back in the
calling function. This is the scheme used by scanf as well; see Section 7.4.

The followingloop fills an array with integers by calls to getint:
int n, array[SIZE], getint(int *);

in swap:

in caller:

}

Pictorially:

temp = *px;
*px = *py;
*py = temp;

int temp;

void swap(int *px, int *py) 1* interchange *px and *py *1
{

CHAPTER 596 POINTERSANDARRAYS

5.3 Pointers and Arrays
In C, there is a strong relationship between pointers and arrays, strong

enough that pointers and arrays should be discussed simultaneously. Anyopera­
tion that can be achieved by array subscripting can also be done with pointers.
The pointer version will in general be faster but, at least to the uninitiated,
somewhat harder to understand.

The declaration

Exercise 5-2. Write getfloat, the floating-point analog of getint. What
type does getfloat return as its function value? 0

Exercise 5-1. As written, getint treats a + or - not followed by a digit as a
valid representation of zero. Fix it to push such a character back on the input.
o

Throughout getint, *pnis used as an ordinary int variable. We have also
used getch and ungetch(described in Section 4.3) so the one extra character
that must be read can be pushed back onto the input.

}

sign = (c == '-') ? -1 : 1;
if (c == ' + ' I I c == ' - ')

c = getch();
for (*pn = 0; isdigit(c); c = getch(»

*pn = 10 * *pn + (c - '0');
*pn *= sign;
if (c 1= EOF)

ungetch (c) ;
return c;

}
return 0;

if (Iisdigit(c) && c 1= EOF && c 1= '+' && c 1= '-') {
ungetch(c); 1* it's not a number *1

1* skip white space *1while (isspace(c = getch(»)

int c, sign;

1* getint: get next integer from input into *pn *1
int getint(int *pn)
{

int getch(void);
void ungetch(int);

#include <ctype.h>

POINTERS AND ARRAYS 97SECTION 5.3

These remarks are true regardless of the type or size of the variables in the
array a. The meaning of "adding 1 to a pointer," and by extension, all pointer
arithmetic, is that pa+ 1 points to the next object, and pa+i points to the i-th

pa~1:\ pa7
a: I I I I

a[O]

will copy the contents of a [0] into x.
If pa points to a particular element of an array, then by definition pa+ 1

points to the next element, pa+i points i elements after pa, and pa-i points i
elements before. Thus, if pa points to a [0], -

*(pa+1)

refers to the contents of a [1], pa +i is the address of a [i], and * (pa +i) is
the contents of a [i] .

Now the assignment

pa:

~~~~----r------"'1

a: ~I __ ~~ ~ __ ~ ~ ~
a[O]

then the assignment
pa = &'a[O];

sets pa to point to element zero of a; that is, pa contains the address of a [ 0 ].

The notation a [i] refers to the i-th element of the array. If pa is a pointer to
an integer, declared as

int *pa;

a[9]a[0]a[1]
a:

int a[ 10];

defines an array a of size 10, that is, a block of 10 consecutive objects named
a[O], a[ 1], ... , a[9].

CHAPTER S98 POINTERSAND ARRAYS



1* string constant *1
1* char array[100]; *1
1* char *ptr; *1

strlen( "hello, world");
strlen (array) ;
strlen(ptr);

all work.
As formal parameters in a function definition,

}

Since s is a pointer, incrementing it is perfectly legal; s+ -+ has no effect on the
character string in the function that called strlen, but merely increments
strlen's private copy of the pointer. That means that calls like

for (n = 0; *s 1= '\0'; s++)
n++;

return n;

int n;

Rather more surprising, at least at first sight, is the fact that a reference to
a[i] can also be written as * (a+i). In evaluating a[i], C converts it to
* (a+i) immediately; the two forms are equivalent. Applying the operator & to
both parts of this equivalence, it followsthat &a[ i] arid a+i are also identical:
a+i is the address of the d-th element beyond a. As the other side of this coin,
if pa is a pointer, expressionsmay use it with a subscript; pa[i] is identical to
*(pa+i). In short, an array-and-index expression is equivalent to one written
as a pointer and offset.

There is one difference between an array name and a pointer that must be
kept in mind. A pointer is a variable, so pa=a and pa++ are legal. But an
array name is not a variable; constructions like a=pa and a++are illegal.

When an array name is passed to a function, what is passed is the location
of the initial element. Within the called function, this argument is a local vari­
able, and so an array name parameter is a pointer, that is, a variable containing
an address. We can use this fact to write another version of strlen, which
computes the length of a string.

1* strlen: return length of string s *1
int strlen(char *s)
{

pa = a;

object beyond pa.
The correspondence between indexing and pointer arithmetic is very close.

By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

pa = &a[O];

pa and a have identical values. Since the name of an array is a synonym for
the location of the initial element, the assignment pa=&a[0] can also be writ­
ten as

POINTERS AND ARRAYS 99SECTION 5.3



If p is a pointer to some element of an array, then p++ increments p to
point to the next element, and p+= i increments it to point i elements beyond
where it currently does. These and similar constructions are the simplest forms
of pointer or address arithmetic.

C is consistent and regular in its approach to address arithmetic; its integra­
tion of pointers, arrays, and address arithmetic is one of the strengths of the
language. Let us illustrate by writing a rudimentary storage allocator. There
are two routines. The first, a110c (n ), returns a pointer p to n .consecutive
character positions, which can be used by the caller of a110c for storing char­
acters. The second, afree (p), releases the storage thus acquired so it can be
re-used later. The routines are "rudimentary" because the calls to afree must
be made in the opposite order to the calls made on a110c. That is, the storage

5.4 AddressArithmetic

£ (int *arr) { ... }

So as far as f is concerned, the fact that the parameter refers to part of a larger
array is of no consequence.

If one is sure that the elements exist, it is also possible to index backwards in
an array; p[-1 I,p[-2], and so on are syntactically legal, and refer to the ele­
ments that immediately precede p[ 0 ]. Of course, it is illegal to refer to objects
that are not within the array bounds. .

or

£(a+2)

both pass to the function f the address of the subarray that starts at a [ 2 ].
Within f, the parameter declaration can read

£ (int arr[]) { ... }

and

are equivalent; we prefer the latter because it says more explicitly that the
parameter is a pointer. When an array name is passed to a function, the func­
tion can at its convenience believe that it has been handed either an array or a
pointer, and manipulate it accordingly. It can even use both notations if it
seems appropriate and clear.

It is possible to pass part of an array to a function, by passing a pointer to
the beginning of the subarray. For example, if a is an array,

£(&a[2])

char *s;

and

char s[];

CHAPTER 5100 POINTERS AND ARRAYS



}

char *alloc(int n) 1* return pointer to n characters *1
{

if (allocbuf + ALLOCSIZE - allocp >= n) { 1* it fits *1
allocp += n;
return allocp - n; 1* old p *1

} else 1* not enough room *1
return 0;

1* storage for alloc *1
1* next free position *1

static char allocbuf[ALLOCSIZE];
static char ~allocp = allocbuf;

#define ALLOCSIZE 10000 1* size of available space *1

freein use
allocbuf: I II I

allocp:"
after call to alloc:

free4--- in use --.4---
allocbuf: I I I

allocp:"
before call to alloc:

managed by alloc and afree is a stack, or last-in, first-out list. The stand­
ard library provides analogous functions called mallocand free that have no
such restrictions; in Section 8.7 we will show how they can be implemented.

.The easiest implementation is to have alloc hand out pieces of a large
character array that we will call allocbuf. This array is private to alloe
and afree. Since they deal in pointers, not array indices, no other routine
need know the name of the array, which can be declared static in the source
file containing alloc and afree, and thus be invisible outside it. In practical
implementations, the array may well not even have a name; it might instead be
obtained by calling malloc or by asking the operating system for a pointer to
some unnamed block of storage.

The other information needed is how much of allocbuf has been used.
We use a pointer, called allocp, that points to the next free element. When
alloc is asked for n characters, it checks to see if there is enough room left in
allocbuf. If so, alloc returns the current value of allocp (i.e., the begin­
ning of the free block), then increments it by n to point to the next free area. If
there is no room, alloc returns zero. afree (p) merely sets allocp to p if
p is inside allocbuf.

ADDRESS ARITHMETIC 101SECTION 5.4



p < q

is true if p points to an earlier member of the array than q does. Any pointer
can be meaningfully compared for equality or inequality with zero. But the
behavior is undefined for arithmetic or comparisons with pointers that do not

if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

show several important facets of pointer arithmetic. First, pointers may be com­
pared under certain circumstances. If p and q point to members of the same
array, then relations like ==, 1=, <, >=, etc., work properly. For example,

and

if (allocbuf + ALLOCSIZE - allocp >= n) { 1* it fits *1

if (allocbuf + ALLOCSIZE - allocp >= n) { 1* it fits *1

checks if there's enough room to satisfy a request for n characters. If there is,
the new value of al10cp would be at most one beyond the end of al1ocbuf.
If the request can be satisfied, al10c returns a pointer to the beginning of a
block of characters (notice the declaration of the function itself). If not, alloc
must return some signal that no space is left. C guarantees that zero is n~ver a
valid address for data, so a return value of zero can be used to signal an abnor­
mal event, in this case, no space.

Pointers and integers are not interchangeable. Zero is the sole exception: the
constant zero may be assigned to a pointer, and a pointer may be compared
with the constant zero. The symbolic constant NULL is often used in place of
zero, as a mnemonic to indicate more clearly that this is a special value for a
pointer. NULL is defined in <stdio. h>. We will use NULL henceforth.

Tests like

static char *allocp = &allocbuf[O];

since the array name is the address of the zeroth element.
The test

defines allocp to be a character pointer and initializes it to point to the begin­
ning of allocbuf, which is the next free position when the program starts.
This could have also been written

static char *allocp = allocbuf;

In general a pointer can be initialized just as any other variable can, though
normally the only meaningful values are zero or an expression involving the
addresses of previouslydefined data of appropriate type. The declaration

}

void afree(char *p) 1* free storage pointed to by p *1
{

if (p >= allocbuf && p < allocbuf + ALLOCSIZE)
allocp = p;

CHAPTER 5102 POINTERS AND ARRAYS



}

In its declaration, p is initialized to s, that is, to point to the first character of
the string. In the while loop, each character in turn is examined until the
, '0' at the end is seen. Because p points to characters, p++ advances p to the
next character each time, and p- s gives the number of characters advanced
over, that is, the string length. (The number of characters in the string could be
too large to store in an into The header <stddef. h> defines a type
ptrdiff _t that is large enough to hold the signed difference of two pointer
values. If we were being very cautious, however,we would use size_ t for the
return type of strlen, to match the standard library version. size_tis the
unsigned integer type returned by the sizeof operator.)

Pointer arithmetic is consistent: if we had been dealing with floats, which
occupy more storage than chars, and if p were a pointer to f loa t, p++ would
advance to the next float. Thus we could write another version of alloc
that maintains floats instead of chars, merely by changing char to float
throughout alloc and afree. All the pointer manipulations automatically
take into account the size of the object pointed to.

The valid pointer operations are assignment of pointers of the same type,
adding or subtracting a pointer and an integer, subtracting or comparing two
pointers to members of the same array, and assigning or comparing to zero. All
other pointer arithmetic is illegal. It is not legal to add two pointers, or to mul­
tiply or divide or shift or mask them, or to add float or double to them, or
even, except for void *, to assign a pointer of one type to a pointer of another
type without a cast.

while (*p 1= '\0')
p++;

return p - s;

char *p = s;

p + n

means the address of the n-th object beyond the one p currently points to. This
is true regardless of the kind of object p points to; n is scaled according to the
size of the objects p points to, which is determined by the declaration of p. If
an int is four bytes, for example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of the same
array, and p<q, then q-p+ 1 is the number of elements from p to q inclusive.
This fact can be used to write yet another version of strlen:

1* strlen: return length of string s *1
int strlen(char *s)
{

point to members of the same array. (There is one exception: the address of the
first element past the end of an array can be used in pointer arithmetic')

Second, we have already observed that a pointer and an integer may be
added or subtracted. The construction

ADDRESS ARITHMETIC 103SECTION 5.4



We will illustrate more aspects of pointers and arrays by studying versionsof
two useful functions adapted from the standard library. The first function is
strcpy (s , t ), which copies the string t to the string s. It would be nice just
to say s=t but this copies the pointer, not the characters. To copy the

amessage: I now is the time\O I
pmessage:G~--.Inow is the time\O I

amessaqe is an array, just big enough to hold the sequence of characters and
,\0' that initializes it. Individual characters within the array may be changed
but amessaqe will always refer to the same storage. On the other hand,
pmessaqe is a pointer, initialized to point to a string constant; the pointer may
subsequently be modified to point elsewhere, but the result is undefined if you
try to modify the string contents.

1* an array *1
1* a pointer *1

char amessage[] = "now is the time";
char *pmessage = "now is the time";

assigns to pmessaqe a pointer to the character array. This is not a string
copy; only pointers are involved. C does not provide any operators for process­
ing an entire string of characters as a unit.

There is an important difference between these definitions:

pmessage = "now is the time";

then the statement

char *pmessage;

as

When a character string like this appears in a program, access to it is through a
character pointer; printf receives a pointer to the beginning of the character
array. That is, a string constant is accessed by a pointer to its first element.

String constants need not be function arguments. If pmessaqe is declared

is an array of characters. In the internal representation, the array is terminated
with the null character '\0' so that programs can find the end. The length in
storage is thus one more than the number of characters between the double
quotes.

Perhaps the most common occurrence of string constants is as arguments to
functions, as in

printf( "hello, world\n");

"I am a string"

A string constant, written as

5.5 Character Pointers and Functions

CHAPTER5104 POINTERS AND ARRAYS



This moves the increment of sand t into the test part of the loop. The value of
*t++ is the character that t pointed to before t was incremented; the postfix
++ doesn't change t until after this character has been fetched. In the same
way, the character is stored into the old s position before s is incremented.
This character is also the value that is compared against ' \0' to control the
loop. The net effect is that characters are copied from t to s, up to and includ­
ing the terminating' \0'.

As the final abbreviation, observe that a comparison against ' \0' is redun­
dant, since the question is merely whether the expression is zero. So the func­
tion would likely be written as

}

1* strcpy: copy t to S; pointer version 2 *1
void strcpy(char *s, char *t)
{

whi1e « *s+ + = *t+ +) 1= ' \ 0')

Because arguments are passed by value, strcpy can use the parameters sand
t in any way it pleases. Here they are conveniently initialized pointers, which
are marched along the arrays a character at a time, until the ' \0' that ter­
minates t has been copied to s.

In practice, strcpy would not be written as we showed it above. Experi­
enced C programmers would prefer

}
}

/* strcpy: copy t to s; pointer version 1 *1
void strcpy(char *s, char *t)
{

while «*s = *t) 1= '\0') {
s++;
t++;

For contrast, here is a version of strcpy with pointers:

}

i = 0;
while ({s[i] = t [i]) 1= ' \ 0')

i++;

int i;

1* strcpy: copy t to s; array subscript version *1
void strcpy(char *s, char *t)
{

characters, we need a loop. The array version is first:

CHARACTER POINTERS AND FUNCTIONS lOSSECTION 5.5



are the standard idioms for pushing and popping a stack; see Section 4.3.
The header <string. h> contains declarations for the functions mentioned

1* push val onto stack *1
1* pop top of stack into val *1

*p++ = val;
val = *--p;

decrements p before fetching the character that p points to. In fact, the pair of
expressions

Since ++ and -- are either prefix or postfix operators, other combinations of
* and ++ and -- occur, although less frequently. For example,

}

The pointer version of strcmp:
1* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t *1
int strcmp(char *s, char *t)
{

for ( ; *s == *t; s++, t++)
if (*s == '\0' )

return 0;
return *s - *t;

}

for (i = 0; s[i] == t[i]; i++)
if (s[i] == '\0')

return 0;
return s[i] - t[i];

int i;

Although this may seem cryptic at first sight, the notational convenienceis con­
siderable, and the idiom should be mastered, because you will see it frequently
in C programs.

The strcpy in the standard library «string. h» returns the target
string as its function value.

The second routine that we will examine is strcmp( s, t), which compares
the character strings sand t, and returns negative, zero or positive if s is lexi­
cographically less than, equal to, or greater than t. The value is obtained by
subtracting the characters at the first positionwhere sand t disagree.

1* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t *1
int strcmp(char *s, char *t)
{

}

while (*s++ = *t++)

1* strcpy: copy t to s; pointer version 3 *1
void strcpy(char *s, char *t)
{

CHAPTER 5106 POINTERS AND ARRAYS



This eliminates the twin problems of complicated storage management and high
overhead that would go with moving the lines themselves.

5.6 Pointer Arrays; Pointers to Pointers
Since pointers are variables themselves, they can be stored in arrays just as

other variables can. Let us illustrate by writing a program that will sort a set of
text lines into alphabetic order, a stripped-down version of the UNIX program
sort.

In Chapter 3 we presented a Shell sort function that would sort an array of
integers, and in Chapter 4 we improved on .it with a quicksort. The same algo­
rithms will work, except that now we have to deal with lines of text, which are
of different lengths, and which, unlike integers, can't be compared or moved in
a single operation. We need a data representation that will cope efficiently and
convenientlywith variable-length text lines.

This is where the array of pointers enters. If the lines to be sorted are stored
end-to-end in one long character array, then each line can be accessed by a
pointer to its first character. The pointers themselves can be stored in an array.
Two lines can be compared by passing their pointers to strcmp. When two
out-of-order lines have to be exchanged, the pointers in the pointer array are
exchanged, not the text lines themselves.

in this section, plus a variety of other string-handling functions from the stand­
ard library.

Exercise 5-3. Write a pointer version of the function strcat that we showed
in Chapter 2: strca t (s ,t) copies the string t to the end of s. 0

Exercise 5-4. Write the function strend (s ,t ), which returns 1 if the string
t occurs at the end of the string s, and zero otherwise. 0

Exercise 5-5. Write versions of the library functions strncpy, strncat, and
strncmp; which operate on at most the first n characters of their argument
strings. For example, strncpy (s,t ,n) copies at most n characters of t to s.
Full descriptions are in Appendix B. 0

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exercises
with pointers instead of array indexing. Good possibilities include getline
(Chapters 1 and 4), atoi, i toa, and their variants (Chapters 2, 3, and 4),
reverse (Chapter 3), and strindex and getop (Chapter 4). 0

POINTER ARRAYS; POINTERS TO POINTERS 107SECTION 5.6



}
}

if «nlines = readlines(lineptr, MAXLINES» >= 0) {
qsort(lineptr, 0, nlines-1);
writelines(lineptr, nlines);
return 0;

} else {
printf("error: input too big to sort\n");
return 1;

1* number of input lines read *1int nlines;

1* sort input lines *1
maine )
{

void qsort(char *lineptr[], int left, int right);

int readlines(char *lineptr[], int nlines);
void writelines(char *lineptr[], int nlines);

1* pointers to text lines *1char *lineptr[MAXLINES];

1* max Ilines to be sorted *1#define MAXLINES 5000

#include <stdio.h>
#include <strinq.h>

As usual, it's best to divide the program into functions that match this natural
division,with the main routine controlling the other functions. Let us defer the
sorting step for a moment, and concentrate on the data structure and the input
and output.

The input routine has to collect and save the characters of each line, and
build an array of pointers to the lines. It will also have to count the number of
input lines, since that information is needed for sorting and printing. Since the
input function can only cope with a finite number of input lines, it can return
some illegal line count like -1 if too much input is presented. .

The output routine only has to print the lines in the order in which they
appear in the array of pointers.

read all the lines of input
sort them
print them in order

The sorting process has three steps:

CHAPTER S108 POINTERSAND ARRAYS



}

while (nlines-- > 0)
printf ("~s\n", *lineptr++);

1* writelines: write output lines *1
void writelines(char *lineptr[], int nlines)
{

The function getline is from Section 1.9.
The main new thing is the declaration for lineptr:

char *lineptr[MAXLINES]

says that 1ineptr is an array of MAXLINES elements, each element of which
is a pointer to a char. That is, lineptr [i] is a character pointer, and
*lineptr [i] is the character it points to, the first character of the i-th saved
text line. .

Since lineptr is itself the name of an array, it can be treated as a pointer
in the same manner as in our earlier examples, and wri telines can be writ­
ten instead as

}

for (i = 0; i < nlines; i++)
printf("~s\n", lineptr[i]);

int i;

1* writelines: write output lines *1
void writelines(char *lineptr[], int nlines)
{

}
return nlines;

}

nlines = 0;
while «len = getline(line, MAXLEN» > 0)

if (nlines >= maxlines I I (p = a110c (len» -- NULL)
return -1;

else {
line[len-1] = '\0'; 1* delete newline *1
strcpy(p, line);
lineptr[nlines++] = p;

int len, nlines;
char *p, line[MAXLEN];

1* readlines: read input lines *1
int readlines(char *lineptr[], int maxlines)
{

#define MAXLEN 1000 1* max length of any input line *1
int getline(char *, int);
char *alloc(int);

POINTER ARRAYS; POINTERS TO POINTERS 109SECTION 5.6



5.7 Multi-dimensionalArra~s
C provides rectangular multi-dimensional arrays, although in practice they

are much less used than arrays of pointers. In this section, we will show some
of their properties.

}

Since any individual element of v (alias lineptr) is a character pointer, temp
must be also, so one can be copied to the other.

Exercise 5-7. Rewrite readlines to store lines in an array supplied by main,
rather than calling alloc to maintain storage. How much faster is the pro­
gram? 0

temp = v[i];
v[i] = v[j];
v[j] = temp;

char *temp;

}

Similarly, the swap routine needs only trivial changes:
1* swap: interchange v[i] and v[j] *1
void swap(char *v[], int i, int j)
{

if (left >= right) 1* do nothing if array contains *1
returp; 1* fewer than two elements *1

swap(v, left, (left + right)/2);
last = left;
for (i = ~eft+1; i <= right; i++)

if (strcmp(v[i], v[left]) < 0)
swap(v, ++last, i);

swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);

Initially *lineptr points to the first line; each increment advances it to the
next line pointer while nlines is counted down.

With input and output under control, we can proceed to sorting. The quick­
sort from Chapter 4 needs minor changes: the declarations have to be modified,
and the comparison operation must be done by calling strcmp. The algorithm
remains the same, which gives us some confidencethat it will still work.

1* qsort: sort v[left] ...v[rightl iI?-toincreasing order *1
void qsort(char *v[], int left, int right)
{

int i, last;
void swap(char *v[], int i, int j);

CHAPTER 5110 POINTERS AND ARRAYS



}

Recall that the arithmetic value of a logical expression, such as the one for
leap, is either zero (false) or one (true), so it can be used as a subscript of the
array day tab.

The array day tab has to be external to both day _of_year and

leap = year~4 == 0 && year~100 1= 0 II year~400 __ 0;
for (i = 1; yearday> daytab[leap][i]; i++)

yearday -= daytab[leap][i];
*pmonth = i;
*pday = yearday;

int i, leap;

1* month_day: set month, day from day of year *1
void month_day(int year, int yearday, int *pmonth, int *pday)
{

}

leap = year~4 == ° && year%100 1= 0 I I year~400 __ 0;
for (i = 1; i < month; i++)

day += daytab[leap][i];
return day;

int i, leap;

1* day_of_year: set day of year from month & day *1
int day_of_year(int year, int month, int day)
{

};

Consider the problem of date conversion, from day of the month to day of
the year and vice versa. For example, March 1 is the 60th day of a non-leap
year, and the 61st day of a leap year. Let us define two functions to do the
conversions: day_of _year_ converts the month and day into the day of the
year, and month_day converts the day of the year into the month and day.
Since this latter function computes two values, the month and day arguments
will be pointers:

month_day(1988, 60, &m, &d)

sets m to 2 and d to 29 (February 29th).
These functions both need the same information, a table of the number of

days in each month ("thirty days hath September ..."). Since the number of
days per month differs for leap years and non-leap years, it's easier to separate
them into two rows of a two-dimensional array than to keep track of what hap­
pens to February during computation. The array and the functions for perform­
ing the transformations are as follows:

static char daytab[2][13] = {
to, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
to, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

MULTI-DIMENSIONAL ARRAYS IIISECTION 5.7



Exercise 5-8. There is no error checking in day_of _year or month_day.
Remedy this defect. 0

since the number of rows is irrelevant, or it could be
f (int (*daytab) [13]) { ... }

which says that the parameter is a pointer to an array of 13 integers. The
parentheses are necessary since brackets [] have higher precedence than *.
Without parentheses, the declaration

int *daytab[13]

is an array of 13 pointers to integers. More generally, only the first dimension
(subscript) of an array is free; all the others have to be specified.

Section 5.12 has a further discussionof complicated declarations.

Other than this notational distinction, a two-dimensionalarray can be treated in
much the same way as in other languages. Elements are stored by rows, so the
rightmost subscript, or column, varies fastest as elements are accessed in storage
order.

An array is initialized by a list of initializers in braces; each row of a two­
dimensional array is initialized by a corresponding sub-list. We started the
array day tab with a column of zero so that month numbers can run from the
natural 1 to 12 instead of 0 to 11. Since space is not at a premium here, this is
clearer than adjusting the indices.

If a two-dimensional array is to be passed to a function, the parameter
declaration in the function must include the number of columns; the number of
rows is irrelevant, since what is passed is, as before, a pointer to an array of
rows, where each row is an array of 13 ints. In this particular case, it is a
pointer to objects that are arrays of 13 ints. Thus if the array day tab is to
be passed to a function f, the declaration of f would be

f (int daytab [2][13]) { ... }

It could also be
f (int daytab [ ] [13]) { ... }

1* WRONG *1daytab[i,j]

1* [row][col] *1daytab[i][j]

rather than

month_day, so they can both use it. We made it char to illustrate a legiti­
mate use of char for storing small non-character integers.

day tab is the first two-dimensional array we have dealt with. In C, a two­
dimensional array is really a one-dimensional array, each of whose elements is
an array. Hence subscripts are written as

CHAPTER 5112 POINTERS AND ARRAYS



5.9 Pointers vs. Multi-dimensional Arrays
Newcomers to C are sometimes confused about the difference between a

two-dimensional array and an array of pointers, such as name in the example
above. Given the definitions

int a [ 10][20] ;
int *b[10];

then a [3] [4] and b [3 ] [4] are both syntactically legal references to a single
into But a is a true two-dimensional array: 200 int-sized locations have been
set aside, and the conventional rectangular subscript calculation 20xrow+col is
used to find the element a I[rowHcol]. For b, however, the definition only allo­
cates 10 pointers and does not initialize them; initialization must be done expli­
citly, either statically or with code. Assuming that each element of b does point
to a twenty-element array, then there will be 200 ints set aside, plus ten cells
for the pointers. The important advantage of the pointer array is that the rows
of the array may be of different lengths. That is, each element of b need not

The declaration of name, which is an array of character pointers, is the same as
1ineptr in the sorting example. The initializer is a list of character strings;
each is assigned to the corresponding position in the array. The characters of
the i-th string are placed somewhere, and a pointer to them is stored in
name [ i ]. Since the size of the array name is not specified, the compiler
counts the initializers and fills in the correct number.

}
return (n < 1 II n > 12) .? name[0] : name[n];

};

static char *name[] = {
"Illegal month",
"January", "February", "March",
"April", "May", "June",
"July", "August", "September",
"October", "November", "December"

5.8 Initialization of Pointer Arrays
Consider the problem of writing a function month_name (n), which returns

a pointer to a character string containing the name of the n-th month. This is
an ideal application for an internal static array. month_name contains a
private array of character strings, and returns a pointer to the proper one when
called. This section shows how that array of names is initialized.

The syntax is similar to previous initializations:
1* month_name: return name of n-th month *1
char *month_name(int n)
{

POINTERS VS. MULTI-DIMENSIONAL ARRAYS IIISECTION 5.9



prints the output
hello, world

5.10 Command-line Arguments
In environments that support C, there is a way to pass command-line argu­

ments or parameters to a program when it begins executing. When main is
called, it is called with two arguments. The first (conventionally called argc,
for argument count) is the number of command-line arguments the program
was invoked with; the second (argv, for argument vector) is a pointer to an
array of character strings that contain the arguments, one per string. We cus­
tomarily use multiple levelsof pointers to manipulate these character strings.

The simplest illustration is the program echo, which echoes its command­
line arguments on a single line, separated by blanks. That is, the command

echo hello, world

aname:
IIllegal month\o Jan\o Feb\o Mar\o
0 15 30 45

Exercise 5-9. Rewrite the routines day_of_year and month_day with
pointers instead of indexing. 0

char aname[] [15] = { "Illegal month", "Jan", "Feb", "Mar" };

with those for a two-dimensional array:

montihxo
name:

char *name[] = { "Illegal month", "Jan, "Feb", "Mar" };

point to a twenty-element vector; some may point to two elements, some to fifty,
and some to none at all.

Although we have phrased this discussion in terms of integers, by far the
most frequent use of arrays of pointers is to store character strings of diverse
lengths, as in the function month_name. Compare the declaration and picture
for an array of pointers:

CHAPTER 5114 POINTERS AND ARRAYS



}

Since argv is a pointer to the beginning of the array of argument strings, incre­
menting it by 1 (++argv) makes it point at the original argv [ 1] instead of
argv [ 0 ]. Each successive increment moves it along to the next argument;
*argv is then the pointer to that argument. At the same time, argc is decre­
mented; when it becomes zero, there are no arguments left to print.

Alternatively, we could write the printf statement as

while (--argc > 0)
printf (""8"8", *++argv, (argc > 1) ? "" "" ) ;

printf( "\n");
return 0;

1* echo command-line arguments; 2nd version *1
~ain(int argc, char *argv[])
{

}

Since argv is a pointer to an array of pointers, we can manipulate the pointer
rather than index the array. This next variation is based on incrementing argv,
which is a pointer to pointer to char, while argc is counted down:

'include <stdio.h>

for (i = 1; i < argc; i++)
printf( ""s"s", argv[i], (i < argc-1) ? "" "");

printf ("\n");
return 0;

int i;

1* echo command-line arguments; 1st version *1
main(int argc, char *argv[])
{

The first version of echo treats argvas an array of character pointers:
'include <stdio.h>

o

By convention, argv [ 0] is the name by which the program was invoked, so
argc is at least 1. If argc is 1, there are no command-line arguments after
the program name. In the example above, argc is 3, and argv [ 0 I, argv [ 1],
and argv[2] are "echo", "hello, ", and "world" respectively. The first
optional argument is argv[ 1] and the last is argv[argc-1]; additionally,
the standard requires that argv[ argc] be a null pointer.

COMMAND-LINE ARGUMENTS 115SECTION 5.10



}

The standard library function strstr (s, t) returns a pointer to the first
occurrence of the string t in the string s, or NULL if there is none. It is
declared in <string. h>.

The model can now be elaborated to illustrate further pointer constructions.
Suppose we want to allow two optional arguments. One says "print all lines
except those that match the pattern;" the second says "precede each printed line
by its line number."

A common convention for C programs on UNIX systems is that an argument
that begins with a minus sign introduces an optional flag or parameter. If we
choose -x {for "except"} to signal the inversion, and -n {"number"} to request
line numbering, then the command

find -x -n pattern

will print each line that doesn't match the pattern, preceded by its line number.
Optional arguments should be permitted in any order, and the rest of the

program should be independent of the number of arguments that were present.
Furthermore, it is convenient for users if option arguments can be combined, as

return found;
}

if (argo 1= 2)
printf ("Usage: find pattern\n");

else
while (getline(line, MAXLINE) > 0)

if (strstr(line, arqv[1]) 1= NULL) {
printf(""s", ~ine);
found++;

char line[MAXLINE];
int found = 0;

1* find: print lines that match pattern from 1st arg *1
main(int argc, char *arqv[])
{

int getline(char *line, int max);

printf ((argc > 1) ? ""s " : ""s", *++arqv);

This shows that the format argument of printf can be an expression too.
As a second example, let us make some enhancements to the pattern-finding

program from Section 4.1. If you recall, we wired the search pattern deep into
the program, an obviously unsatisfactory arrangement. Following the lead of
the UNIX program grep, let us change the program so the pattern to be
matched is specified by the first argument on the command line.

#include <stdio.h>
#include <string.h>
#define MAXLINE 1000

CHAPTER 5116 POINTERS AND ARRAYS



}

argo is decremented and argv is incremented before each optional argu­
ment. At the end of the loop, if there are no errors, argo tells howmany argu­
ments remain unprocessed and argv points to the first of these. Thus argo

}
return found;

}

if (argc 1= 1)
p!;'intf("~sa9'e:find -x -n pattern\n");

else
while (getline(line, MAXLINE) > 0) {

lineno++;
if «strstr(line, *argv) 1= NULL) 1= except) {

if (number)
printf (""ld:", lineno);

printf("%s", line);
found++;

}

break;
default:

printf("find: illegal option "c\n", c);
argc = 0;
found = -1;
break;

except = 1;
break;

case 'n':
number = 1•,

while (--argc > 0 && (*++argv)[O] == '-')
while (c = *++argv[O])

switch (c) {
case 'x':

char line[MAXLINE];
long lineno = 0;
int c, except = 0, number = 0, found = 0;

1* find: print lines that match pattern from 1st arg *1
main(int argc, char *argv[])
{

int getline(char *line, int max);

find -nx pattern

Here is the program:
#include <stdio.h>
#include <string.h>
#define MAXLINE 1000

in

COMMAND-LINE ARGUMENTS 117SECTION 5.10



In C, a function itself is not a variable, but it is possible to define pointers to
functions, which can be assigned, placed in arrays, passed to functions, returned
by functions, and so on. We will illustrate this by modifying the sorting pro­
cedure written earlier in this chapter so that if the optional argument -n is
given; it will sort the input lines numerically instead of lexicographically.

A sort often consists of three parts-a comparison that determines the

5.11 Pointers to Functions

prints the last n lines. The program should behave rationally no matter how
unreasonable the input or the value of n. Write the program so it makes the
best use of available storage; lines should be stored as in the sorting program of
Section 5.6, not in a two-dimensional array of fixed size. 0

Exercise 5-13. Write the program tail, which prints the last n lines of its
input. By default, n is 10, let us say, but it can be changed by an optional
argument, so that

tail -n

to mean tab stops every n columns, starting at column m. Choose convenient
(for the user) default behavior. 0

entab -m +n

Exercise 5-11. Modify the programs entab and detab (written as exercises in
Chapter 1) to accept a list of tab stops as arguments. Use the default tab set­
tings if there are no arguments. 0

Exercise 5-12. Extend entab and detab to accept the shorthand

should be 1 and *argV should point at the pattern. Notice that *++argv is a
pointer to an argument string, so (*++argv) [0] is its first character. (An
alternate valid form would be **++argv.) Because [] binds tighter than *
and ++, the parentheses are necessary; without them the expression would be
taken as *++(argv [0 ] ). In fact, that is what we used in the inner loop,
where the task is to walk along a specific argument string. In the inner loop,
the expression *++argv[ 0 1increments the pointer argv[ O]!

It is rare that one uses pointer expressions more complicated than these; in
such cases, breaking them into two or three steps will be more intuitive.

Exercise 5-10. Write the program expr, which evaluates a reverse Polish
expression from the command line, where each operator or operand is a separate
argument. For example,

~xpr 2 3 4 + *
evaluates 2 x (3+4). 0

CHAPTER5118 POINTERSAND ARRAYS



}

In the call to qsort, strcmp and numcmpare addresses of functions. Since
they are known to be functions, the & operator is not necessary, in the same way
that it is not needed before an array name.

We have written qsort so it can process any data type, not just character

}

if (argc > 1 &.&. strcmp(argv[1], "-n") == 0)
numeric = 1;

if «nlines = readlines(lineptr, MAXLINES» >= 0) {
qsort«void **) lineptr, 0, nlines-1,

(int (*)(void*,void*»(numeric ? numcmp : strcmp»;
writelines(lineptr, nlines);
return 0;

} else {
printf("input too big to sort\n");
return 1;

1* number of input lines read *1
1* 1 if numeric sort *1

int nlines;
int numeric = 0;

1* sort input lines *1
main(int argc, char *argv[])
{

void qsort(void *lineptr[], int left, int right,
int (*comp)(void *, void *»;

int numcmp(char *, char *);

int readlines(char *lineptr[], int nlines);
void writelines(char *lineptr[], int nlines);

'define MAXLINES 5000 1* max #lines to be sorted *1
char *lineptr[MAXLINES]; 1* pointers to text lines *1

'include <stdio.h>
'include <string.h>

ordering of any pair of objects, an exchange that reverses their order, and a
sorting algorithm that makes comparisons and exchanges until the objects are in
order. The sorting algorithm is independent of the comparison and exchange
operations, so by passing different comparison and exchange functions to it, we
can arrange to sort by different criteria. This is the approach taken in our new
sort.

Lexicographic comparison of two lines is done by strcmp, as before; we will
also need a routine numcmpthat compares two lines on the basis of numeric
value and returns the same kind of condition indication as strcmp does. These
functions are declared ahead of main and a pointer to the appropriate one is
passed to qsort. We have skimped on error processing for arguments, so as to
concentrate on the main issues.

POINTERSTO FUNCTIONS 119SECTION 5.11



says that comp is a function returning a pointer to an int, which is very dif­
ferent.

We have already shown strcmp, which compares two strings. Here is
numcmp,which compares two strings on a leading numeric value, computed by

1* WRONG *1int *comp(void *, void *)

}

The declarations should be studied with some care. The fourth parameter of
qsort is

int (*comp)(void *, void *)

which says that compis a pointer to a function that has two void * arguments
and returns an into

The use of compin the line

if «*comp)(v[i], v[left]) < 0)

is consistent with the declaration: compis a pointer to a function, *compis the
function, and

(*comp)(v[i], v[left])

is the call to it. The parentheses are needed so the components are correctly
associated; without them,

if (left >= right) 1* do nothing if array contains *1
return; 1* fewer than two elements *1

swap(v, left, (left + right)/2);
last = left;
for (i = left+1; i <= right; i++)

if «*comp)(v[i], v[left]) < 0)
swap(v, ++last, i);

swap(v, left, last);
qsort(v, left, last-1, comp);
qsort(v, last+1, right, comp);

int i, last;
void swap(void *v[], int, int);

{

strings. As indicated by the function prototype, qsort expects an array of
pointers, two integers, and a function with two pointer arguments. The generic
pointer type void * is used for the pointer arguments. Any pointer can be cast
to void * and back again without loss of information, so we can call qsort by
casting arguments to void *. The elaborate cast of the function argument
casts the arguments of the comparison function. These will generally have no
effect on actual representation, but assure the compiler that all is well.

1* qsort: sort v[left] •..v[right] into increasing order *1
void qsort(void *v[], int left, int right,

int (*comp)(void *, void *»

CHAPTER 5110 POINTERS ANDARRAYS



Exercise 5-17. Add a field-handling capability, so sorting may be done on fields
within lines, each field sorted according to an independent set of options. (The
index for this book was sorted with -df for the index category and -n for the
page numbers') 0

Exercise 5-15. Add the option -f to fold upper and lower case together, so that
case distinctions are not made during sorting; for example, a and A compare
equal. 0

Exercise 5-16. Add the -d ("directory order") option, which makes comparis­
ons only on letters, numbers and blanks. Make sure it works in conjunction
with -f. 0

Exercise 5-14. Modify the sort program to handle a -r flag, which indicates
sorting in reverse (decreasing) order. Be sure that -r works with =n, 0

A variety of other options can be added to the sorting program; some make
challenging exercises.

}

temp = veil;
veil = v[j];
v[j] = temp;

void *temp;

void swap(void *v[], int i, int j)
{

The swap function, which exchanges two pointers, is identical to what we
presented earlier in the chapter, except that the declarations are changed to
void *.

}
return 0;

v1 = atof(s1);
v2 = atof(s2);
if (v1 < v2)

return -1;
else if (v1 > v2)

return 1;
else

double v1, v2;

1* numcmp: compare s1 and s2 numerically *1
int numcmp(char *s1, char *s2)
{

#include <stdlib.h>

calling atof:

POINTERSTO FUNCTIONS 121SECTION 5.11



char **argv
argv: pointer to pointer to char

int (*daytab)[13]
daytab: pointer to array[13] of int

int *daytab[13]
daytab: array[13] of pointer to int

void *comp()
comp: function returning pointer to void

void (*comp)()
comp: pointer to function returning void

char (*(*x(»[])()
x: function returning pointer to array[] of
pointer to function returning char

char (*(*x[3])(»[S]
x: array[3] of pointer to function returning
pointer to array[S] of char

del is based on the grammar that specifies a declarator, which is spelled out
precisely in Appendix A, Section 8.5; this is a simplified form:

del: optional *'s direct-del
direct-dcl: name

(del)
direct-dcl ( )
direct-del [optional size]

In words, a del is a direct-del, perhaps preceded by *'s. A direct-del is a

illustrates the problem: * is a prefix operator and it has lower precedence than
( ), so parentheses are necessary to force the proper association.

Although truly complicated declarations rarely arise in practice, it is impor­
tant to know how to understand them, and, if necessary, how to create them.
One good way to synthesize declarations is in small steps with typede£, which
is discussed in Section 6.7. As an alternative, in this section we will present a
pair of programs that convert from valid C to a word description and back
again. The word description reads left to right.

The first, del, is the more complex. It converts a C declaration into a word
description, as in these examples:

1* pf: pointer to function returning int *1int (*pf)();

and
1* f: function returning pointer to int *1int *f();

5.12 Complicated Declarations
C is sometimes castigated for the syntax of its declarations, particularly ones

that involve pointers to functions. The syntax is an attempt to make the
declaration and the use agree; it works well for simple cases, but it can be
confusing for the harder ones, because declarations cannot be read left to right,
and because parentheses are over-used. The difference between

CHAPTER 5112 POINTERS AND ARRAYS



}

for (ns = 0; qettoken() -- '*';
ns++;

dirdcl();
while (ns-- > 0)

strcat(out, " pointer to");

1* count *'s *1

int ns;

1* dcl: parse a declarator *1
void dcl(void)
{

The heart of the dcl program is a pair of functions, dcl and dirdcl, that
parse a declaration according to this grammar. Because the grammar is recur­
sively defined, the functions call each other recursively as they recognize pieces
of a declaration; the program is called a recursive-descent parser.

* pfa [ ] ( )

I
name

I
dir-dcl

I
dir-del

I
del

I
dir-dcl

I
dir-dcl

I
del

pf a will be identified as a name and thus as a direct -del. Then pf a (] is also
a direct-del. Then *pfa [] is a recognized as a del, so (*pfa [ ]) is a direct­
del. Then (*pfa [ ] ) ( ) is a direct-del and thus a del, We can also illustrate
the parse with a parse tree like this (where direct-del has been abbreviated to
dir-dcl): ..

(*pfa[])()

name, or a parenthesized del, or a direct -dcl followed by parentheses, or a
direct -del followedby brackets with an optional size.

This grammar can be used to parse declarations. For instance, consider this
declarator:

COMPLICATED DECLARATIONS 123SECTION 5.12



enum { NAME, PARENS, BRACKETS };

void dcl(void) ;
void dirdcl (void);

int gettoken(void);
int tokentype; 1* type of last token *1
char token[MAXTOKEN]; 1* last token string *1
char name [MAXTOKEN] ; 1* identifier name *1
char datatype[MAXTOKEN]; 1* data type = char, int, etc. *1
char out [1000] ; 1* output string *1

#define MAXTOKEN 100

'include <stdio.h>
'include <string.h>
'include <ctype.h>

Since the programs are intended to be illustrative, not bullet-proof, there are
significant restrictions on del. It can only handle a simple data type like char
or into It does not handle argument types in functions, or qualifiers like
const. Spurious blanks confuse it. It doesn't do much error recovery, so
invalid declarations will also confuse it. These improvements are left as exer­
cises.

Here are the global variables and the main routine:

}
}

printf("error: expected name or (dcl)'n");
while «type=gettoken(» == PARENS II type == BRACKETS)

if (type == PARENS)
strcat(out, II function returning");

else {
strcat (out, II array");
strcat(out, token);
strcat (out, II of "J ;

)'n");
1* variable name *1

1* ( dcl ) *1if (tokentype == '(') {
dcl ();
if (tokentype 1= ')')

printf{"error: missing
} else if (tokentype == NAME)

strcpy{name, token);
else

int type;

1* dirdcl: parse a direct declarator *1
void dirdcl{void)
{

CHAPTER 5124 POINTERSAND ARRAYS



}

getch and ungetch were discussed in Chapter 4.
Going in the other direction is easier, especially if we do not worry about

generating redundant parentheses. The program undcl converts a word

;
*p = '\0';
return tokentype = BRACKETS;

} else if (isalpha(c» {
for (*p++ = c; isalnum(c = getch(»;

*p++ = c;
*p = '\0';
ungetch (c) ;
return tokentype = NAME;

} else
return tokentype = c;

} else if (c == '[') {
for (*p++ = c; (*p++ = getch(» 1= ']'; )

}

if (c == ' ( ') {
if «c = getch(» == ')') {

strcpy(token, "()");
return tokentype = PARENS;

} else {
ungetch (c) ;
return tokentype = '(';

II c == '\t'), ,while «c = getch(» --

int c, getch(void);
void ungetch(int);
char *p = token;

}

The function gettoken skips blanks and tabs, then finds the next token in
the input; a "token" is a name, a pair of parentheses, a pair of brackets perhaps
including a number, or any other single character.

int gettoken(void) 1* return next token *1
{

return 0;
}

while (gettoken() 1= EOF) { 1* 1st token on line *1
strcpy(datatype, token); 1* is the datatype *1
out [0] = ' \0' ;
dcl(); 1* parse rest of line *1
if (tokentype 1= '\n')

printf("syntax error\n");
printf(""s: "S "s\n", name, out, datatype);

maine) 1* convert declaration to words *1
{

COMPLICATED DECLARATIONS 125SECTION 5.12



Exercise 5-20. Expand dcl to handle declarations with function argument
types, qualifiers like const, and so on. 0

Exercise 5-18. Make dcl recover from input errors. 0

Exercise 5-19. Modify undcl so that it does not add redundant parentheses to
declarations. 0

}
return 0;
}

while (qettoken() 1= EOF) {
strcpy(out, token);
while « type = qettoken(» 1= '\n')·

if (type =~ PARENS I I type == BRACKETS)
strcat(out, token);

else if (type == '*') {
sprintf(temp, "(*"s)", out);
strcpy(out, temp);

} else if (type == NAME) {
sprintf(temp, ""s "s", token, out);
strcpy(out, temp);

} else
printf("invalid input at "s\n", token);

printf(""s\n", out);

int type;
char tellip[JUXTOKEN];

1* undcl: convert word description to declaration *1
maine )
{

char (*(*x(»[])()

The abbreviated input syritax lets us .reuse the gettoken function. undcl also
uses the same external variables asdcl does.

to

description like "x is a function returning a pointer to an array of pointers to
functions returning char," which we will express as

x () * [] * () char

CHAPTER 5126 POINTERSANI) ARRAYS



127

(0,0)

• (4,3)

y

6.1 Basics of Structures
Let us create a few structures suitable for graphics. The basic object is a

point, which we will assume has an x coordinate and a y coordinate, both
integers.

A structure is a collection of one or more variables, possibly of different
types, grouped together under a single name for convenient handling. (Struc­
tures are called "records" in some languages, notably Pascal.) Structures help
to organize complicated data, particularly in large programs, because they per­
mit a group of related variables to be treated as a unit instead of as separate
entities.

One traditional example of a structure is the payroll record: an employee is
described by a set of attributes such as name, address, social security number,
salary, etc. Some of these in turn could be structures: a name has several com­
ponents, as does an address and even a salary. Another example, more typical
for C, comes from graphics: a point is a pair of coordinates, a rectangle is a pair
of points, and so on.

The main change made by the ANSI standard is to define structure
assignment-structures may be copied and assigned to, passed to functions, and
returned by functions. This has been supported by most compilers for many
years, but the properties are now precisely defined. Automatic structures and
arrays may now also be initialized.

CHAPTER 6: Structures



The structure member operator "." connects the structure name and the
member name. To print the coordinates of the point pt, for instance,

structure-name. member

in the sense that each statement declares x, y and z to be variables of the
named type and causes space to be set aside for them.

A structure declaration that is not followedby a list of variables reserves no
storage; it merely describes a template or the shape of a structure. If the
declaration is tagged, however, the tag can be used later in definitions of
instances of the structure. For example, given the declaration of point above,

struct point pt;

defines a variable pt which is a structure of type struct point. A structure
can be initialized by.followingits definition with a list of initializers, each a con­
stant expression, for the members:

struct point maxpt = { 320, 200 };

An automatic structure may also be initialized by assignment or by calling a
function that returns a structure of the right type.

A member of a particular structure is referred to in an expression by a con­
struction of the form

int x, y, Z;

is syntactically analogous to
struct { ...} x, y, Z;

};

The keyword struct introduces a structure declaration, which is a list of
declarations enclosed in braces. An optional name called a structure tag may
follow the word struct (as with point here). The tag names this kind of
structure, and can be used subsequently as a shorthand for the part of the
declaration in braces.

The variables named in a structure are called members. A structure
member or tag and an ordinary (i.e., non-member) variable can have the same
name without conflict, since they can always be distinguished by context.
Furthermore, the same member names may occur in different structures,
although as a matter of style one would normally use the same names only for
closely related objects.

A struct declaration defines a type. The right brace that terminates the
list of members may be followedby a list of variables, just as for any basic type.
That is,

The two components can be placed in a structure declared like this:
struct point {

int X;
int y;

CHAPTER 6128 STRUCTURES



The only legal operations on a structure are copying it or assigning to it as a
unit, taking its address with &, and accessing its members. Copy and assign­
ment include passing arguments to functions and returning values from func­
tions as well. Structures may not be compared. A structure may be initialized
by a list of constant member values; an automatic structure may also be initial­
ized by an assignment.

Let us investigate structures by writing some functions to manipulate points
and rectangles. There are at least three possible approaches: pass components
separately, pass an entire structure, or pass a pointer to it. Each has its good
points and bad points.

The first function, makepoint,will take two integers and return a point
structure:

6.2 Structures and Functions

refers to the x coordinate of the pt 1member of screen.

screen.pt1.x

then

struct rect screen;

The rect structure contains two point structures. Ifwe declare screen as

};

struct rect {
struct point pt1;
struct point pt2;

--+-----------~ x
pt1
DPt2

dist = sqrt«double)pt.x * pt.x + (double)pt.y * pt.y);

Structures can be nested. One representation of a rectangle is a pair of
points that denote the diagonally opposite corners:

y

or to compute the distance from the origin (0,0) to pt,

double dist, sqrt(double);

printf( 1I~,~n, pt.X, pt.y);

STRUCTURES AND FUNCTIONS 129SECTION 6.2



This assumes that the rectangle is represented in a standard form where the
pt 1 coordinates are less than the pt2 coordinates. The following function.
returns a rectangle guaranteed to be in canonical form:

}

1* ptinrect: return 1 if p in r, 0 if not *1
int ptinrect(struct point p, struct rect r)
{

return p.x >= r.pt1.x && p.x < r.pt2.x
&& p.y >= r.pt1.y && p.y < r.pt2.y;

Here both the arguments and the return value are structures. We incremented
the components in p1 rather than using an explicit temporary variable to
emphasize that structure parameters are passed by value like any others.

As another example, the function ptinrect tests whether a point is inside
a rectangle, where we have adopted the convention that a rectangle includes its
left and bottom sides but not its top and right sides:

}

p1.x += p2.x;
p1.y += p2.y;
return p1;

The next step is a set of functions to do arithmetic on points. For instance,
1* addpoint: add two points *1
struct point addpoint(struct point p1, struct point p2)
{

screen.pt1 = makepoint(O, 0);
screen.pt2 = makepoint(XMAX, YMAX);
middle = makepoint((screen.pt1.x + screen.pt2.x)/2,

(screen.pt1.y + screen.pt2.y)/2);

struct rect screen;
struct point middle;
struct point makepoint(int, int);

Notice that there is no conflict between the argument name and the member
with the same name; indeed the re-use of the names stresses the relationship.

makepoint can now be used to initialize any structure dynamically, or to
provide structure arguments to a function:

}

temp.x = x;
temp.y = y;
return temp;

struct point temp;

1* makepoint: make a point from x and y components *1
struct point makepoint(int x, int y)
{

CHAPTER 6130 STRUCTURES



then these four expressionsare equivalent:
r.pt1.x
rp->pt1.x
(r. pt1).x
(rp->pt1).x

struct rect r, *rp = &r;

Both • and -> associate from left to right, so if we have

refers to the particular member. (The operator -> is a minus sign immediately
followedby >.) So we could write instead

printf("origin is (%d,%d)\n", pp->x, pp->y);

pp = &origin;
printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);

The parentheses are necessary in <*pp). x because the precedence of the struc­
ture member operator . is higher than *. The expression *pp. x means
* (pp .x) , which is illegal here because x is not a pointer.

Pointers to structures are so frequently used that an alternative notation is
provided as a shorthand. If p is a pointer to a structure, then

p->member-of-structure

struct point origin, *pp;

says that pp is a pointer to a structure of type struct point. If pp points to
a point structure, *pp is the structure, and (*pp). x and (*pp). yare the
members. To use pp, we might write, for example,

struct point *pp;

If a large structure is to be passed to a function, it is generally more efficient
to pass a pointer than to copy the whole structure. Structure pointers are just
like pointers to ordinary variables. The declaration

}

temp.pt1.x = min(r.pt1.x, r.pt2.x);
temp.pt1.y = min(r.pt1.y, r.pt2.y);
temp.pt2.x = max(r.pt1.x, r.pt2.x);
temp.pt2.y = max(r.pt1.y, r.pt2.y);
return temp;

struct rect temp;

/* canonrect: canonicalize coordinates of rectangle */
struct rect canonrect(struct rect r)
{

'define min(a, b) «a) < (b) ? (a) (b)
#define max (a, b) « a) > (b) ? (a) (b) )

STRUCTURES AND FUNCTIONS 131SECTION 6.2



and there is an array of pairs. The structure declaration

struct key {
char *word;
int count;

} keytab[NKEYS];

declares a structure type key, defines an array keytab of structures of this
type, and sets aside storage for them. Each element of the array is a structure.
This could also be written

char *word;
int count;

6.3 Arrays of Structure.
Consider writing a program to count the occurrences of each C keyword.

We need an array of character strings to hold the names, and an array of
integers for the counts. One possibility is to use two parallel arrays, keyword
and keycount, as in

char *keyword[NKEYS];
int keycount[NKEYS];

But the very fact that the arrays are parallel suggests a different organization,
an array of structures. Each keyword entry is a pair:

increments len, not p, because the implied parenthesization is ++(p->len).
Parentheses can be used to alter the binding: (++p) ->len increments p before
accessing len,· and (p++)- >1en increments p afterward. (This last set of
parentheses is unnecessary.)

In the same way, *p->str fetches whatever str points to; *p->str++
increments str after accessing whatever it points to (just like *s++);
(*p->str )++ increments whatever str points to; and *p++->str increments
p after accessing whatever str points to.

++p->len

then

struct {
int len;
char *str;

} *p;

The structure operators. and ->, together with () for function calls and []
for subscripts, are at the top of the precedence hierarchy and thus bind very
tightly. For example, given the declaration

CHAPTER6131 STRUCTURES



but the inner braces are not necessary when the initializers are simple variables
or character strings, and when all are present. As usual, the number of entries
in the array key tab will be computed if initializers are present and the [] is
left empty.

The keyword-counting program begins with the definition of key tab. The
main routine reads the input by repeatedly calling a function getword that
fetches one word at a time. Each word is looked up in key tab with a version
of the binary search function that we wrote in Chapter 3. The list of keywords
must be sorted in increasing order in the table.

{ "auto", ° },
{ "break", ° },
{ "case", ° },

The initializers are listed in pairs corresponding to the structure members. It
would be more precise to enclose initializers for each "row" or structure in
braces, as in

};

struct key {
char *word;
int count;

} keytab[] = {
"auto", ,0,
"break", 0,
"case", 0,
"char", 0,
"const ", 0,
"continue", 0,
"default", 0,
1* ••. *1
"unsigned", 0,
"void", 0,
"volatile", 0,
"while", °

Since the structure key tab contains a constant set of names, it is easiest to
make it an external variable and initialize it once and for all when it is defined.
The structure initialization is analogous to earlier ones-the definition is fol­
lowed by a list of initializers enclosed in braces:

struct key keytab[NKEYS];

};

struct key {
char *word;
int count;

ARRAYS OF STRUCTURES 133SECTION 6.3



We will show the function getword in a moment; for now it suffices to say
that each call to getword finds a word, which is copied into the array named
as its first argument.

The quantity NKEYS is the number of keywords in key tab. Although we

}

}
return -1;

return mid;

low = 0;
high = n - 1;
while (low <= high) {

mid = (low+high) I 2;
if «cond = strcmp(word, tab[mid].word» < 0)

high = mid - 1;
else if (cond > 0)

low = mid + 1;
else

int cond;
int low, high, mid;

1* binsearch: find word in tab[0]...tab[n-1] *1
int binsearch(char *word, struct key tab[], int n)
{

}
return 0;

while (getword(word, MAXWORD) 1= EOP)
if (isalpha(word[O]»

if «n = binsearch(word, keytab, NKEYS» >= 0)
keytab[n].count++;

for (n = 0; n < NKEYS; n++)
if (keytab[n].count > 0)

printf ("%4d "s\n",
keytab[n].count, keytab[n].word);

int n;
char word[MAXWORD];

1* count C keywords *1
maine )
{

int getword(char *, int);
int binsearch(char *, struct key *, int);

#define MAXWORD 100

#include <stdio.h>
#include <ctype.h>
#include <string.h>

CHAPTER6134 STRUCTURES



This has the advantage that it does not need to be changed if the type changes.
A sizeof can not be used in a #if line, because the preprocessor does not

parse type names. But the expression in the #define is not evaluated by the
preprocessor, so the code here is legal.

Now for the function getword. We have written a more general getword
than is necessary for this program, but it is not complicated. getword fetches
the next "word" from the input, where a word is either a string of letters and
digits beginning with a letter, or a single non-white space character. The func­
tion value is the first character of the word, or EOF for end of file, or the char­
acter itself if it is not alphabetic.

#define NKEYS (sizeof keytab / sizeof keytab[O])

Another way to write this is to divide the array size by the size of a specific ele­
ment:

#define NKEYS (sizeof keytab / sizeof(struct key»

yield an integer equal to the size of the specified object or type in bytes.
(Strictly, sizeof produces an unsigned integer value whose type, size_ t, is
defined in the header <stddef. h>.) An object can be a variable or array or
structure. A type name can be the name of a basic type like int or double,
or a derived type like a structure or a pointer.

In our case, the number of keywords is the size of the array divided by the
size of one element. This computation is used in a #define statement to set
the value of NKEYS:

sizeof(type name)

and

sizeof object

C provides a compile-time unary operator called sizeof that can be used to
compute the size of any object. The expressions

size of keytab / size of struct key

could count this by hand, it's a lot easier and safer to do it by machine, espe­
cially if the list is subject to change. One possibilitywould be to terminate the
list of initializers with a null pointer, then loop along keytab until the end is
found.

But this is more than is needed, since the size of the array is completely
determined at compile time. The size of the array is the size of one entry times
the number of entries, so the number of entries is just

ARRAYS OF STRUCTURES 135SECTION 6.3



To illustrate some of the considerations involvedwith pointers to and arrays
of structures, let us write the keyword-counting program again, this time using
pointers instead of array indices.

The external declaration of keytab need not change, but main and
binsearch do need modification.

6.4 Pointer. to Structure.

Exercise 6-1. Our version of getword does not properly handle underscores,
string constants, comments, or preprocessor control lines. Write a better ver­
sion. 0

getword uses the getch and ungetch that we wrote in Chapter 4. When
the collection of an alphanumeric token stops, getword has gone one character
too far. The call to ungetch pushes that character back on the input for the
next call. getword also uses isspace to skip white space, isalpha to iden­
tify letters, and isalnum to identify letters and digits; all are from the stand­
ard header <ctype .h>.

}

*w = '\0';
return word[O];

}

}
for ( ; --lim> 0; w++)

if (Iisalnum(*w = getch(») {
ungetch (*w);
break;

if (c 1= EOF)
*w++ = c;

if (Iisalpha(c)) {

*w = '\0';
return c,;

while (isspace(c = getch(»)

int c, getch(void);
void ungetch(int);
char *w = word;

1* getword: get next word or character from input *1
int getword(char *word, int lim)
{

CHAPTER6136 STRUCTURES



}

There are several things worthy of note here. First, the declaration of
binsearch must indicate that it returns a pointer to struct key instead of
an integer; this is declared both in the function prototype and in binsearch.
If binsearch finds the word, it returns a pointer to it; if it fails, it returns
NULL.

Second, the elements of keytab are now accessed by pointers. This

}
return NULL;

return mid;

while (low < high) {
mid = low + (high-low) I 2;
if «cond = strcmp(word, mid->word» < 0)

high = mid;
else if (cond > 0)

low = mid + 1;
else

int cond;
struct key *low = &tab[O];
struct key *high = &tab[n];
struct key *mid;

1* binsearch: find word in tab[0] •.•tab[n-1] *1
struct key *binsearch(char *word, struct key *tab, int n)
{

}

while (getword(word, MAXWORD) 1= EOF)
if (isalpha(word[O]»

if «p=binsearch(word, keytab , NKEYS» 1= NULL)
p->count++;

for (p = keytab; p < keytab + NKEYS; p++)
if (p->count > 0)

printf( ""4d "s\n", p->count, p->word);
return 0;

char word[MAXWORD];
struct key *p;

1* count C keywords; pointer version *1
maine )
{

int getword(char *, int);
struct key *binsearch(char *, struct key *, int);

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#define MAXWORD 100

POINTERS TO STRUCTURES 137SECTION 6.4



This is a matter of personal taste; pick the form you like and hold to it.

struct key *
binsearch(char *word, struct key *tab, int n)

the function name can be hard to see, and to find with a text editor. Accord­
ingly an alternate style is sometimes used:

might well require eight bytes, not five. The sizeof operator returns the
proper value.

Finally, an aside on program format: when a function returns a complicated
type like a structure pointer, as in

struct key *binsearch(char *word, struct key *tab, int n)

};

because the addition of two pointers is illegal. Subtraction is legal, however, so
high-low is the number of elements, and thus

mid = low + (high-low) I 2

sets mid to point to the element halfway between low and high.
The most important change is to adjust the algorithm to make sure that it

does not generate an illegal pointer or attempt to access an element outside the
array. The problem is that &.tab[-1] and &.tab[n] are both outside the lim­
its of the array tab. The former is strictly illegal, and it is illegal to derefer­
ence the latter. The language definition does guarantee, however, that pointer
arithmetic that involves the first element beyond the end of an array (that is,
&.tab [n ]) will work correctly.

In main we wrote
for (p = keytab; p < keytab + NKEYS; p++)

If p is a pointer to a structure, arithmetic on p takes into account the size of the
structure, so p+ + increments p by the correct amount to get the next element of
the array of structures, and the test stops the loop at the right time.

Don't assume, however, that the size of a structure is the sum of the sizes of
its members. Because of alignment requirements for different objects, there
may be unnamed "holes" in a structure. Thus, for instance, if a char is one
byte and an int four bytes, the structure

struct {
char c;
int i;

1* WRONG *1mid = (low+high) I 2

requires significant changes in binsearch.
The initializers for low and high are now pointers to the beginning and just

past the end of the table.
The computation of the middle element can no longer be simply

CHAPTER6138 STRUCTURES



To find out whether a new word is already in the tree, start at the root and
compare the new word to the word stored at that node. If they match, the ques­
tion is answered affirmatively. If the new word is less than the tree word, con­
tinue searching at the left child, otherwise at the right child. If there is no child
in the required direction, the new word is not in the tree, and in fact the empty
slot is the proper place to add the new word. This process is recursive, since the
search from any node uses a search from one of its children. Accordingly,
recursive routines for insertion and printing will be most natural.

Going back to the description of a node, it is conveniently represented as a
structure with four components:

now

/"is the

fo! ~n o( "time
/ \ \ / \

all good party their to
/ \

aid come

No node may have more than two children; it might have only zero or one.
The nodes are maintained so that at any node the left subtree contains only

words that are lexicographically less than the word at the node, and the right
subtree contains only words that are greater. This is the tree for the sentence
"now is the time for all good men to come to the aid of their party", as built by
inserting each word as it is encountered:

6.5 Self-referential Structures
Suppose we want to handle the more general problem of counting the

occurrences of all the words in some input. Since the list of words isn't known
in advance, we can't conveniently sort it and use a binary search. Yet we can't
do a linear search for each word as it arrives, to see if it's already been seen; the
program would take too long. (More precisely, its running time is likely to grow
quadratically with the number of input words') How can we organize the data
to cope efficiently with a list of arbitrary words?

One solution is to keep the set of words seen so far sorted at all times, by
placing each word into its proper position in the order as it arrives. This
shouldn't be done by shifting words in a linear array, though- that also takes
too long. Instead we will use a data structure called a binary tree.

The tree contains one "node" per distinct word; each node contains

a pointer to the text of. the word
a count of the number of occurrences
a pointer to the left child node
a pointer to the right child node

SELF-REFERENTIAL STRUCTURES 139SECTION 6.5



}

root :I: NULL;
while (getword(word, MAXWORD) 1= EOP)

if (isalpha(word[O]»
root :I: addtree(root, word);

treeprint(root);
return 0;

struct tnode *root;
char word[MAXWORD];

1* word frequency count *1
maine )
{

#define MAXWORD 100
struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);
int getword(char *, int);

#include <stdio.h>
#include <ctype.h>
#include <string.h>

The code for the whole program is surprisingly small, given a handful of sup­
porting routines like getword that we have already written. The main routine
reads words with getword and installs them in the tree with addtree.

};
1* q points to a t *1struct t *q;

};
struct s {

1* p points to an s *1struct s *p;

declares left to be a pointer to a tnode, not a tnode itself.
Occasionally, one needs a variation of self-referential structures: two struc­

tures that refer to each other. The way to handle this is:

struct t {

struct tnode *left;

This recursive declaration of a node might look chancy, but it's correct. It is
illegal for a structure to contain an instance of itself, but

};

1* the tree node: *1
1* points to the text *1
1* number of occurrences *1
1* left child *1
1* right child *1

char *word;
int eount j
struct tnode *left;
struct tnode *right;

struct tnode {

CHAPTER6140 STRUCTURES



Storage for the new node is fetched by a routine talloc, which returns a
pointer to a free space suitable for holding a tree node, and the new word is
copied to a hidden place by strdup. (We will discuss these routines in a
moment.) The count is initialized, and the two children are made null. This
part of the code is executed only at the leaves of the tree, when a new node is
being added. We have (unwisely) omitted error checking on the values returned
by strdup and talloc.

treeprint prints the tree in sorted order; at each node, it prints the left
subtree, (all the words less than this word), then the word itself, then the right
subtree (all the words greater). If you feel shaky about how recursion works,
simulate treeprint as it operates on the tree shown above.

}

if (p == NULL) { 1* a new word has arrived *1
p = talloc(); 1* make a new node *1
p->word = strdup(w);
p->count = 1;
p->left = p->right = NULL;

} else if «cond = strcmp(w, p->word» == 0)
p->count++; 1* repeated word *1

else if (cond < 0) 1* less than into left subtree *1
p->left = addtree(p->left, w);

else 1* greater than into right subtree *1
p->right = addtree(p->right, w);

return p;

int cond;

1* addtree: add a node with w, at or below p *1
struct tnode *addtree(struct tnode *p, char *w)
{

struct tnode *talloc(void);
char *strdup(char *);

The function addtree is recursive. A word is presented bymainto the top
level (the root) of the' tree. At each stage, that word is compared to the word
already stored at the node, and is percolated down to either the left or right sub­
tree by a recursive call to addtree. Eventually the word either matches some­
thing already in the tree (in which case the count is incremented), or a null
pointer is encountered, indicating that a node must be created and added to the
tree. If a new node is created; addtree returns a pointer to it, which is
installed in the parent node.

SELF·REFERENTIALSTRUCTURES 141SECTION 6.5



strdup merely copies the string given by its argument into a safe place,
obtained by a call on nlalloe:

}
return (struct tnode *) mallop(sizeof(struct tnode»;

1* talloc: make ~ tnode *1
struct tnod~ *taltoc(void)
{

#include <$tdlib.h>

A practical note: if the tree becomes "unbalanced" because the words don't
arrive in random order, the running time of the program can grow too much.
As a worst case, if the words are already in order, this program does an expen­
sive simulation of linear search. There are generalizations of the binary tree
that do not suffer from this worst-case behavior, but we will not describe them
here.

Before we leave this example, it is also worth a brief digression on a problem
related to storage allocators. Clearly it's desirable that there be only one
storage allocator in a program, even though it 'allocates different kinds of
objects. But if one allocator is to process requests for, say, pointers to ehars
and pointers to struet tnodes, two questions arise. First, how does it meet
the requirement of most real machines that objects of certain types must satisfy
alignment restrictions (for example, integers often must be located at even
addresses)? Second, what declarations can c<?pewith the fact that an allocator
must necessarily return different kinds of pointerss

Alignment requirements can generally be satisfied easily, at the cost of some
wasted space, by ensuring that the allocator always returns a pointer that meets
all alignment restrictions. The alloe of Chapter 5 does not guarantee any
particular alignment, so we will use the standard library function malloe,
which does. In Chapter 8 we will show one way to implement malloe.

The question of the type declaration for a function like malloe is a vexing
one for any language that takes its type-checking seriously. In C, the proper
method is to declare that malloe returns a pointer to void, then explicitly
coerce the pointer into the desired type with a cast. malloe and related rou­
tines are declared in the standard header <stdlib. h>. Thus talloe can be
written as

}
}

if (p I= NULL) {
treeprint(p->left);
printf (""4d %s\n", p-o-count;, p->word);
treeprint(p->right);

1* treeprint: in-order print of tree p *1
void treeprint(struct tnode *p)
{

CHAPTER6142 STRUCTURES



it must be replaced by 1.
There are two routines that manipulate the names and replacement texts.

install (s, t) records the name s and the replacement text t in a table; s
and t are just character strings. lookup (s) searches for s in the table, and
returns a pointer to the place where it was found, or NULLif it wasn't there.

The algorithm is a hash search- the incoming name is converted into a small

6.6 TableLookup
In this section we will write the innards of a table-lookup package, to illus­

trate more aspects of structures. This code is typical of what might be found in
the symbol table management routines of a macro processor or a compiler. For
example, consider the #define statement. When a line like

#define IN 1

is encountered, the name IN and the replacement text 1 are stored in a table.
Later, when the name IN appears in a statement like

state = IN;

Exercise 6-4. Write a program that prints the distinct words in its input sorted
into decreasing order of frequency of occurrence. Precede each word by its
count. 0

malloc returns NULLif no space is available; strdup passes that value on,
leaving error-handling to its caller.

Storage obtained by calling malloc may be freed for re-use by calling
free; see Chapters 7 and 8.

Exercise 6-2. Write a program that reads a C program and prints in alphabeti­
cal order each group of variable names that are identical in the first 6 charac­
ters, but different somewhere thereafter. Don't count words within strings and
comments. Make 6 a parameter that can be set from the command line. 0

Exercise 6-3. Write a cross-referencer that prints a list of all words in a docu­
ment, and, for each word, a list of the line numbers on which it occurs. Remove
noise words like "the," "and," and so on. 0

}

p = (char *) malloc(strlen(s)+1); 1* +1 for '\0' *1
if (p 1= NULL)

strcpy(p, s);
return p;

char *p;

1* make a duplicate of s *1char *strdup(char *s)
{

TABLE LOOKUP 143SECTION 6.6



Unsigned arithmetic ensures that the hash value is non-negative.
The hashing process produces a starting index in the array hashtab; if the

string is to be found anywhere, it will be in the list of blocks beginning there.
The search is performed by lookup. If lookup finds the entry already
present, it returns a pointer to it; if not, it returns NULL.

}

for (hashval = 0; *s 1= '\0'; s++)
hashval = *s + 31 * hashval;

return hashval % HASHSIZE;

1* hash: form hash value for string s *1
unsigned hash(char *s)
{

unsigned hashval;

The hashing function, which is used by both lookup and install, adds
each character value in the string to a scrambled combination of the previous
ones and returns the remainder modulo the array size. This is not the best pos­
sible hash function, but it is short and effective.

static struct nlist *hashtab[HASHSIZE]; 1* pointer table *1

#define HASHSIZE 101

The pointer array is just

};

struct nlist { 1* table entry: *1
struct nlist *next; 1* next entry in chain *1
char *name; 1* defined name *1
char *defn; 1* replacement text *1

A block in the list is a structure containing pointers to the name, the
replacement text, and the next block in the list. A null next-pointer marks the
end of the list.

name
defn

non-negative integer, which is then used to index into an array of pointers. An
array element points to the beginning of a linked list of blocks describing names
that have that hash value. It is NULL if no names have hashed to that value.

CHAPTER6144 STRUCTURES



Exercise 6-5. Write a function undef that will remove a name and definition
from the table maintained by lookup and install. 0

Exercise 6-6. Implement a simple version of the #define processor (i.e., no
arguments) suitable for use with C programs, based on the routines of this sec­
tion. You may also find getch and ungetch helpful. 0

}

if «np = lookup(name» == NULL) { 1* not found *1
np = (struct nlist *) malloc(sizeof(*np»;
if (np == NULL I I (np->name = strdup(name» == NULL)

return NULL;
hashval = hash(name);
np->next = hashtab[hashval];
hashtab[hashval] = np;

} else 1* already there *1
free«void *) np->defn); 1* free previous defn *1

if «np->defn = strdup(defn» == NULL)
return NULL;

return np;

struct nlist *np;
unsigned hashval;

1* install: put (name, defn) in hashtab *1
struct nlist *install(char *name, char *defn)
{

install uses lookup to determine whether the name being installed is
already present; if so, the new definition will supersede the old one. Otherwise,
a new entry is created. install returns NULLif for any reason there is no
room for a new entry.

struct nlist *lookup(char *);
char *strdup(char *);

The for loop in lookup is the standard idiom for walking along a linked list:
for (ptr = head; ptr 1= NULL; ptr = ptr->next)

}

for (np = hashtab[hash(s)]; np 1= NULL; np = np->next)
if (strcmp(s, np->name) == 0)

return np; 1* found *1
return NULL; 1* not found *1

struct nlist *np;

1* lookup: look for s in hashtab *1
struct nlist *lookup(char *s)
{

TABLE LOOKUP 145SECTION 6.6



It must be emphasized that a typedef declaration does not create a new
type in any sense; it merely adds a new name for some existing type. Nor are
there any new semantics: variables declared this way have exactly the same pro­
perties as variables whose declarations are spelled out explicitly. In effect,
typedef is like #define, except that since it is interpreted by the compiler, it

}
return (Treeptr) malloc(sizeof(Treenode»;

This creates two new type keywords called Treenode (a structure) and
Treeptr (a pointer to the structure). Then the routine talloc could become

Treeptr talloc(void)
{

typedef struct tnode { 1* the tree node: *1
char *word; 1* points to the text *1
int count; 1* number of occurrences *1
Treeptr left; 1* left child *1
Treeptr right; 1* right child *1

} Treenode;

Similarly, the declaration
typedef char *String;

makes String a synonym for char * or character pointer, which may then be
used in declarations and casts:

String p, lineptr[MAXLINES], alloc(int);
intostrcmp(String, String);
p = (String) malloc(100);

Notice that the type being declared in a typedef appears in the position of
a variable name, not right after the word typedef. Syntactically, typedef is
like the storage classes extern, static, etc. We have used capitalized names
for typedefs, to make them stand out.

As a more complicated example, we could make typedefs for the tree
nodes shown earlier in this chapter:

typedef struct tnode *Treeptr;

len, maxlen;
dengths[] ;

Length
Length

6.7 Typedef
C provides a facility called typedef for creating new data type names. For

example, the declaration
typedef int Length;

makes the name Length a synonym for into The type Length can be used in
declarations, casts, etc., in exactly the same ways that the type int can be:

CHAPTER 6146 STRUCTURES



The variable uwill be large enough to hold the largest of the three types; the
specific size is implementation-dependent. Anyone of these types may be
assigned to u and then used in expressions, so long as the usage is consistent:
the type retrieved must be the type most recently stored. It is the programmer's

} u;

6.8 Unions
A union is a variable that may hold {at different times> objects of different

types and sizes, with the compiler keeping track of size and alignment require­
ments. Unions provide a way to manipulate different kinds of data in a single
area of storage, without embedding any machine-dependent information in the
program. They are analogous to variant records in Pascal.

As an example such as might be found in a compiler symbol table manager,
suppose that a constant may be an int, a float, or a character pointer. The
value of a particular constant must be stored in a variable of the proper type,
yet it is most convenient for table management if the value occupies the same
amount of storage and is stored in the same place regardless of its type. This is
the purpose of a union-a single variable that can legitimately hold anyone of
several types. The syntax is based on structures:

union u_tag {
int ivaI;
float fval;
char *sval;

in the sort program of Chapter 5.
Besides purely aesthetic issues, there are two main reasons for using

typedefs. The first is to parameterize a program against portability problems.
If typedefs are used for data types that may be machine-dependent, only the
typedefs need change when the program is moved. One common situation is
to' use tyPedef names for various integer quantities, then make an appropriate
set of choices of short, int, and long for each host machine. Types like
siz;~_ ~ and ptrdiff_ t from the standard library are examples.

The second purpose of typedefs is to provide better documentation for a
program-a type called Treeptr may be easier to understand than one
declared only as a pointer to a complicated structure.

PFI strcmp, numcmp;

can cope with textual substitutions that are beyond the capabilities of the
preprocessor. For example,

typedef int (*PFI)(char *, char *);

creates the type PFI, for "pointer to function (of two char * arguments)
returning int," which can be used in contexts like

UNIONS 147SECTION 6.8



} symtab [NSYM];

the member ival is .referredto as
symtab[i].u.ival

and the first character of the string sval by either of
*symtab[i].u.sval
symtab[i].u.sval[O]

In effect, a union is a structure in which all members have offset zero from
the base, the structure is big enough to hold the "widest" member, and the
alignment is appropriate for all of the types in the union. The same operations
are permitted on unions as on structures: assignment to or copying as a unit,
taking the address, and accessing a member. .

A union may only be initialized with a value of the type of its first member;

} u;

printf( "bad type "d in utype\n", utype);

Unions may occur within structures and arrays, and vice versa. The notation
for accessing a member of a union in a structure (or vice versa) is identical to
that for nested structures. For example, in the structure array defined by

struct {
char *name;
int flags;
int utype;
union {

int ivaI;
float fval;
char *sval;

just as for structures. If the variable utype is used to keep track of the current
type stored in u, then one might see code such as

if (utype == INT)
printf ("%d\n", u .ivaI) ;

else if (utype == FLOAT)
printf (""f\n", u.fval) ;

else if (utype == STRING)
printf(""s\n~, u.sval);

else

union-pointer ->member

or

responsibility to keep track of which type is currently stored in a union; the
results are implementation-dependent if something is stored as one type and
extracted as another.

Syntactically, members of a union are accessed as
union-name. member

CHAPTER6148 STRUCTURES



enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };

The numbers must be powers of two. Then accessing the bits becomes a matter
of "bit-fiddling" with the shifting, masking, and complementing operators that
were described in Chapter 2.

Certain idioms appear frequently:
flags 1= EXTERNAL I STATIC;

turns on the EXTERNAL and STATIC bits in f lags, while
flags &.= -(EXTERNAL 1 STATIC);

turns them off, and
if « flags &. (EXTERNAL 1 STATIC» == 0) ...

is true if both bits are off.
Although these idioms are readily mastered, as an alternative C offers the

capability of defining and accessing fields within a word directly rather than by
bitwise logical operators. A bit-field, or field for short, is a set of adjacent bits
within a single implementation-defined storage unit that we will call a "word."
The syntax of field definition and access is based on structures. For example,
the symbol table Idefines above could be replaced by the definition of three

or

When storage space is at a premium, it may be necessary to pack several
objects into a single machine word; one common use is a set of single-bit flags in
applications like compiler symbol tables. Externally-imposed data formats, such
as interfaces to hardware devices, also often require the ability to get at pieces
of a word.

Imagine a fragment of a compiler that manipulates a symbol table. Each
identifier in a program has certain information associated with it, for example,
whether or not it is a keyword, whether or not it is external and/or static, and
so on. The most compact way to encode such information is a set of one-bit
flags in a single char or into

The usual way this is done is to define a set of "masks" corresponding to the
relevant bit positions, as in

#define KEYWORD 01
#define EXTERNAL 02
#define STATIC 04

6.9 Bit-fields

thus the union u described above can only be initialized with an integer value.
The storage allocator in Chapter 8 shows how a union can be used to force a

variable to be aligned on a particular kind of storage boundary.

BIT-FIELDS 149SECTION 6.9



to test them.
Almost everything about fields is implementation-dependent. Whether a

field may overlap a word boundary is implementation-defined. Fields need not
be named; unnamed fields (a colon and width only) are used for padding. The
special width 0 may be used to force alignment at the next word boundary.

Fields are assigned left to right on some machines and right to left on others.
This means that although fields are useful for maintaining internally-defined
data structures, the question of which end comes first has to be carefully con­
sidered when picking apart externally-defined data; programs that depend on
such things are not portable. .Fields may be declared only as ints; for portabil­
ity, specify signed or unsigned explicitly. They are not arrays, and they do
not have addresses, so the &. operator cannot be applied to them.

to turn them off; and
if (flags.is_extern __ 0 && flags.is_static __ 0)

flags.is_extern = flags.is_static = 0;

to turn the bits on;

flags.is_ext~rn = flags.is_static = 1;

1·,
1·,
1·,

struct {
unsigned int is_keyword
unsigned int is_extern
unsigned int is static

} flags;

This defines a variable called flags that contains three l-bit fields. The
riumber following the colon represents the field width in bits. The fields are
declared unsigned int to ensure that they are unsigned quantities.

Individual fields are referenced in the same way as other structure members:
flags. is_keyword, flags. is_extern, etc. fields behave like small
integers, and may participate in arithmetic expressions just like other integers.
Thus the previous examples may be written more naturally as

fields:

CHAPTER 6ISO STRUCTURES



151

7.1 Standard Input and Output
As we said in Chapter 1, the library implements a simple model of text input

and output. A text stream consists of a sequence of lines; each line ends with a
newline character. If the system doesn't operate that way, the library does
whatever is necessary to make it appear as if it does. For instance, the library
might convert carriage return and linefeed to newline on input and back again
on output.

The simplest input mechanism is to read one character at a time from the
standard input, normally the keyboard, with getchar:

int getchar(void)

getchar returns the next input character each time it is called, or EOFwhen it
encounters end of file. The symbolic constant EOFis defined in <stdio. h>.

Input and output facilities are not part of the C language itself, so we have
not emphasized them in our presentation thus far. Nonetheless, programs
interact with their environment in much more complicated ways than those we
have shown before. In this chapter we will describe the standard library, a set
of functions that provide input and output, string handling, storage manage­
ment, mathematical routines, and a variety of other services for C programs.
We will concentrate on input and output.

The ANSI standard defines these library functions precisely, so that they can
exist in compatible form on any system where C exists. Programs that confine
their system interactions to facilities provided by the standard library can be
moved from one system to another without change.

The properties of library functions are specified in more than a dozen
headers; we have already seen several of these, including <stdio .h>,
<string. h>, and <ctype. h>. We will not present the entire library here,
since we are more interested in writing C programs that use it. The library is
described in detail in Appendix B.

CHAPTER 7: Input and Output



before the first reference. When the name is bracketed by < and > a search is
made for the header in a standard set of places (for example, on UNIX systems,
typically in the directory /usr/include).

Many programs read only one input stream and write only one output
stream; for such programs, input and output with getchar, putchar, and
printf may be entirely adequate, and is certainly enough to get started. This
is particularly true if redirection is used to connect the output of one program to
the input of the next. For example, consider the program lower, which con­
verts its input to lower case:

#include <stdio.h>

puts the standard output of prog into the standard input of anotherprog.
Output produced by printf also finds its way to the standard output.

Calls to putchar and printf may be interleaved-output appears in the
order in which the calls were made.

Each source file that refers to an input/output library function must contain
the line

int putchar(int)

is used for output: putchar (c) puts the character c on the standard output,
which is by default the screen. putchar returns the character written, or EOF
if an error occurs. Again, output can usually be directed to a file with
»filename: if prog uses putchar,

prog >outfile

will write the standard output to outfile instead. If pipes are supported,
prog I anotherprog

runs the two programs otherprog and prog, and pipes the standard output of
otherprog into the standard input for prog.

The function

causes prog to read characters from infile instead. The switching of the
input is done in such a way that prog itself is obliviousto the change; in partic­
ular, the string" <infile" is not included in the command-line arguments in
argv. Input switching is also invisible if the input comes from another program
via a pipe mechanism: on some systems, the command line

otherprog I prog

prog <infile

The value is typically -1, but tests should be written in terms of EOFso as to be
independent of the specific value.

In many environments, a file may be substituted for the keyboard by using
the < convention for input redirection: if a program prog uses getchar, then
the command line

CHAPTER 7152 INPUT AND OUTPUT



7.2 Formatted Output- Printf
The output function printf translates internal values to characters. We

have used printf informally in previous chapters. The description here covers
most typical uses but is not complete; for the full story, see Appendix B.

int printf(char *format, arg c , arg2, ... )

printf converts, formats, and prints its arguments on the standard output
under control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which
are copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to printf.
Each conversion specification begins with a " and ends with a conversionchar­
acter. Between the" and the conversioncharacter there may be, in order:
• A minus sign, which specifies left adjustment of the converted argument.
• A number that specifies the minimum field width. The converted argument will be
printed in a field at least this wide. If necessary it will be padded on the left (or
right, if left adjustment is called for) to make up the field width.

• A period, which separates the field width from the precision.
• A number, the precision, that specifies the maximum number of characters to be
printed from a string, or the number of digits after the decimal point of a floating­
point value, or the minimum number of digits for an integer.

The function tolower is defined in <ctype. h»; it converts an upper case
letter to lower case, and returns other characters untouched. As we mentioned
earlier, "functions" like getchar and putchar in <stdio. h> and tolower
in <ctype. h> are often macros, thus avoiding the overhead of a function call
per character . We will show how this is done in Section 8.5. Regardless of how
the <ctype. h> functions are implemented on a given machine, programs that
use them are shielded from knowledgeof the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case
to upper, depending on the name it is invokedwith, as found in argv [0 ]. 0

}

while «c = getchar(» 1= EOF)
putchar(tolower(c»;

return 0;

int c;

main() 1* lower: convert input to lower case *1
{

#include <stdio.h>
#include <ctype.h>

FORMATTED OUTPUT-PRINTF 153SECTION 7.2



A warning: printf uses its first argument to decide how many arguments

:%s: :hello, world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
:%-158: :hello, world
:%15.10s: hello, wor:
:%-15.108: :hello, wor

Most of the format conversions have been illustrated in earlier chapters.
One exception is precision as it relates to strings. The followingtable shows the
effect of a variety of specifications in printing "hello, world" (12 characters).
We have put colons around each field so you can see its extent.

A width or precision may be specified as *, in which case the value is com­
puted by converting the next argument (which must be an int). For example,
to print at most max characters from a string s,

printf("%.*s", max, sl ;

d,i int;decimal number.
o int;unsigned octal number (without a leading zero).

x, X int;unsigned hexadecimal number (without a leading Ox or
OX),using abcdef or ABCDEF for 10, ..., 15.

u int;unsigned decimal number.
c int;single character.
s char *;print characters from the string until a ' \0' or the

number of characters given by the precision.
f double;[-1m.dddddd,where the number of d's is given by the

precision (default 6).
e,E double;[-1m.dddddde±xx or [-1m.ddddddE±XX, where the

number of d's is given by the precision (default 6).
g,G double;use %e or %E if the exponent is less than -4 or greater

than or equal to the precision; otherwise use %f. Trailing zeros
and a trailing decimal point are not printed.

p void *;pointer (implementation-dependent representation).
% no argument is converted; print a %.

ARGUMENT TYPE; PRINTED ASCHARACTER

TABLE 7-1. BASIC PRINTF CONVERSIONS

• An h if the integer is to be printed as a short,or I (letter ell) if as a long.

Conversion characters are shown in Table 7-1. If the character after the" is
not a conversionspecification, the behavior is undefined.

CHAPTER7154 INPUT ANDOUTPUT



since we will not return the character count that printf does.
The tricky bit is how minprintf walks along the argument list when the

list doesn't even have a name. The standard header <stdarg. h> contains a
set of macro definitions that define how to step through an argument list. The
implementation of this header will vary from machine to machine, but the inter­
face it presents is uniform.

The type va_list is used to declare a variable that will refer to each argu­
ment in turn; in minprintf, this variable is called ap, for "argument pointer."
The macro va_start initializes ap to point to the first unnamed argument. It
must be called once before ap is used. There must be at least one named argu­
ment; the final named argument is used by va_start to get started.

where the declaration •.. means that the number and types of these arguments
may vary. The declaration •.. can only appear at the end of an argument list.
Our minprintf is declared as

void minprintf(char *fmt, ...)

This section contains an implementation of a minimal version of printf, to
show how to write a function that processes a variable-length argument list in a
portable way. Since we are mainly interested in the argument processing,
minprintf will process the format string and arguments 'but will call the real
printf to do the format conversions.

The proper declaration for printf is
int printf(char *fmt, ...)

7.3 Variable-length Argument Lists

The function sprintf does the same conversions as printf does, but
stores the output in a string:

int sprintf(char *string, char *format, arg i , arg2, ... )

sprintf formats the arguments in argb arg2, etc., according to format as
before, but places the result in string instead of on the standard output;
string must be big enough to receive the result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way.
As a minimum, it should print non-graphic characters in octal or hexadecimal
according to local custom, and break long text lines. 0

printf(s); 1* FAILS if s contains % *1
printf("%s", s); 1* SAFE *1

follow and what their types are. It will get confused, and you will get wrong
answers, if there are not enough arguments or if they are the wrong type. You
should also be aware of the difference between these two calls:

VARIABLE-LENGTH ARGUMENT LISTS ISSSECTION 7.3



Exercise 7-3. Revise minprintf to handle more of the other facilities of
printf. 0

}
1* clean up when done *1

}
va_end(ap) ;

}

}
switch (u+p) {
case 'd':

ivaI = va_arg(ap, int);
printf(""d", ivaI);
break;

case 'f':
dval = va_arg(ap, double);
printf (""f", dval);
,break;

case's' :
for (sval = va_arg(ap, char *); *sval; sval++)

putchar(*sval);
break;

default:
putchar( *p) ;
brea~;

continue;

va_start(ap, fmt); 1* make ap point to 1st unnamed arg *1
for (p = fmt; *p; p++) {

if (*p 1= ',,') {
putchar (*p);

va_list ap; 1* points to each unnamed arg in turn *1
char *p, *sval;
int ivaI;
double dval;

1* minprintf: minimal printf with variable argument list *1
void minprintf(char *fmt, ...)
{

#include <stdarg.h>

Each call of va_arq returns one argument and steps ap to the next;
va_arq uses a type name to determine what type to return and how big a step
to take. Finally, va_end does whatever cleanup is necessary. It must be called
before the function returns.

These properties form the basis of our simplified printf:

CHAPTER 7IS6 INPUT ANDOUTPUT



7.4 FormattedInput-Scant
The function scanf is the input analog of printf, providing many of the

same conversionfacilities in the opposite direction.
int scanf(char *£ormat, ... )

scanf reads characters from the standard input, interprets them according to
the specification in format, and stores the results through the remaining argu­
ments. The format argument is described below; the other arguments, each of
which must be a pointer, indicate where the' corresponding converted input
should be stored. As with printf, this section is a summary of the most useful
features, not an exhaustive list.

scanf stops when it exhausts its format' string, or when some input fails to
match the control specification. It returns as its value the number of success­
fully matched and assigned input items. This can be used to decide how many
items were found. On end of file, EOF is returned; note that this is different
from 0, which means that the next input character does not match the first
specification in the format string. The 'next call to scanf resumes searching
immediately after the last character already converted.

There is also a function sscanf that reads from a string instead of the
standard input:

int sscanf (char *strinq, char *£ormat, arg), arg2, ... )

It scans the string according to the format in format, and stores the result­
ing values through arg., arg2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used
to control conversionof input. The format string may contain:
• Blanks or tabs, which are ignored.
• Ordinary characters (not ,,), which are expected to match the next non-white space
character of the input stream.

• Conversion specifications, consisting of the character '" an optional assignment
suppression character *, an optional number specifying a maximum field width, an
optional h, 1, or L indicating the width of the target, and a conversioncharacter.

A conversion specification directs the conversion of the next input field. Nor­
mally the result is placed in the variable pointed to by the corresponding argu­
ment. If assignment suppression is indicated by the * character, however, the
input field is skipped; no assignment is made. An input field is defined as a
string of non-white space characters; it extends either to the next white space
character or until the field width, if specified, is exhausted. This implies that
scanf will read across line boundaries to find its input, since newlines are
white space. (White space characters are blank, tab, newline, carriage return,
vertical tab, and formfeed.)

The conversioncharacter indicates the interpretation of the input field. The
corresponding argument must be a pointer, as required by the call-by-value

FORMATTED INPUT -SCANF 157SECTION 7.4



}

Suppose we want to read input lines that contain dates of the form
25 Dec 1988

The scanf statement is

sum = 0;
while (scanf("%lf", &'v) == 1)

printf( "\t%.2f\n", sum += v);
return 0;

double sum, V;

maine) 1* rudimentary calculator *1
{

The conversion characters d, i, 0, u, and x may be preceded by h to indi­
cate that a pointer to short rather than int appears in the argument list, or
by 1 (letter ell) to indicate that a pointer to long appears in the argument list.
Similarly, the conversion characters e, f, and g may be preceded by 1to indi­
cate that a pointer to double rather than float is in the argument list.

As a first example, the rudimentary calculator of Chapter 4 can be written
with scanf to do the input conversion:

#include <stdio.h>

unsigned decimal integer; unsigned int *.
hexadecimal integer (with or without leading Ox or OX);int *.
characters; char *. The next input characters (default 1) are
placed at the indicated spot. The normal skip over white space
is suppressed; to read the next non-white space character, use
"1s.
character string (not quoted); char *, pointing to an array of
characters large enough for the string and a terminating , \0'
that will be added.
floating-point number with optional sign, optional decimal point
and optional exponent; float *.
literal %; no assignment is made."

e, f, q

s

u
x
c

d decimal integer; int *.
i integer; int *. The integer may be in octal (leading 0) or

hexadecimal (leading Ox or OX).
o octal integer (with or without leading zero); int *.

INPUT DATA; ARGUMENT TYPECHARACTER

TABLE 7-2. BASIC SCANF CONVERSIONS

semantics of C. Conversioncharacters are shown in Table 7-2.

CHAPTER7158 INPUT ANDOUTPUT



Exercise 7-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or
sscanf to do the input and number conversion. 0

Exercise 7-4. Write a private version of scanf analogous to minprintf from
the previous section. 0

This error is not generally detected at compile time.

seanf( "%d", &n);

instead of

seanf( ""d", n);

Calls to scanf can be mixed with calls to other input functions. The next
call to any input function will begin by reading the first character not read by
scanf.

A final warning: the arguments to scanf and sscanf must be pointers.
By far the most common error is writing

}

while (getline(line, sizeof(line» > 0) {
if (sseanf(line, "%d "S "d", &day, monthname, &year) == 3)

printf("valid: "s\n", line); 1* 25 Dec 1988 form *1
else if (sseanf(line, ""d/"d/"d", &month, &day, &year) == 3)

printf ("valid: "s\n", line); 1* mm/dd/yy form *1
else

printf("invalid: "s\n", line); 1* invalid form *1

scanf ignores blanks and tabs in its format string. Furthermore, it skips
over white space (blanks, tabs, newlines, etc.) as it looks for input values. To
read input whose format is not fixed, it is often best to read a line at a time,
then pick it apart with sscanf. For example, suppose we want to read lines
that might contain a date in either of the forms above. Then we could write

seanf("%d/%d/%d", &month, &day, &year);

int day, month, year;

No &. is used with monthname,since an array name is a pointer.
Literal characters can appear in the scanf format string; they must match

the same characters in the input. So we could read dates of the form
mmldd/yy with this scanf statement:

seanf (""d "S %d", &day, monthname, &year);

int day, year;
char monthname[20];

FORMATTED INPUT -SCANF 159SECTION 7.4



The first argument of fopen is a character string containing the name of the
file. The second argument is the mode, also a character string, which indicates
how one intends to use the file. Allowable modes include read ("r,,),write
("w"), and append (" a "). Some systems distinguish between text and binary
files; for the latter, a "b" must be appended to the mode string.

This says that fp is a pointer to a FILE, and fopen returns a pointer to a
FILE. Notice that FILE is a type name, like int, not a structure tag; it is
defined with a typedef. (Details of how fopen can be implemented on the
UNIX system are given in Section 8.5.)

The call to f open in a program is
fp = fopen(name, mode);

FILE *fp;
FILE *fopen(char *name, char *mode);

prints the contents of the files x. c and y. c (and nothing else) on the standard
output.

The question is how to arrange for the named files to be read-that is, how
to connect the external names that a user thinks of to the statements that read
the data.

The rules are simple. Before it can be read or written, a file has to be
opened by the library function fopen. fopen takes an external name like x. c
or y. c, does some housekeeping and negotiation with the operating system
(details of which needn't concern us), and returns a pointer to be used in subse­
quent reads or writes of the file.

This pointer, called the file pointer, points to a structure that contains infor­
mation about the file, such as the location of a buffer, the current character
position in the buffer, whether the file is being read or written, and whether
errors or end of file have occurred. Users don't need to know the details,
because the definitions obtained from <stdio. h> include a structure declara­
tion called FILE. The only declaration needed for a file pointer is exemplified
by

cat x.c y.c

7.5 File Access
The examples so far have all read the standard input and written the stand­

ard output, which are automatically defined for a program by the local operat­
ing system.

The next step is to write a program that accesses a file that is not already
connected to the program. One program that illustrates the need for such
operations is cat, which concatenates a set of named files onto the standard
output. cat is used for printing files on the screen, and as a general-purpose
input collector for programs that do not have the capability of accessing files by
name. For example, the command

CHAPTER 7160 INPUT AND OUTPUT



For formatted input or output of files, the functions fscanf and fprintf
may be used. These are identical to scanf and printf, except that the first
argument is a file pointer that specifies the file to be read or written; the format
string is the second argument.

int fscanf(FILE *fp, char *format, )
int fprintf(FILE *fp, char *format, )

With these preliminaries out of the way, we are now in a position to write
the program cat to concatenate files. The design is one that has been found
convenient for many programs. If there are command-line arguments, they are
interpreted as filenames, and processed in order. If there are no arguments, the
standard input is processed.

getc(stdin)
putc«c), stdout)

#define getchar()
#define putchar(c)

int getc(FILE *fp)

getc returns the next character from the stream referred to by fp; it returns
EOFfor end of file or error.

putc is an output function:

int putc(int c, FILE *fp)

putc writes the character c to the file fp and returns the character written, or
EOFif an error occurs. Like getchar and putchar, getc and putc may be
macros instead of functions.

When a C program is started, the operating system environment is responsi­
ble for opening three files and providing file pointers for them. These files are
the standard input, the standard output, and the standard error; the correspond­
ing file pointers are called stdin, stdout, and stderr, and are declared in
<stdio. h>. Normally stdin is connected to the keyboard and stdout and
stderr are connected to the screen, but stdin and stdout may be
redirected to files or pipes as described in Section 7.1.

getchar and putchar can be defined in terms of getc, putc, stdin,
and stdout as follows:

If a file that does not exist is opened for writing or appending, it is created if
possible. Opening an existing file for writing causes the old contents to be dis­
carded, while opening for appending preserves them. Trying to read a file that
does not exist is an error, and there may be other causes of error as well, like
trying to read a file when you don't have permission. If there is any error,
fopen will return NULL.(The error can be identified more precisely; see the
discussion of error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is a way to read or write the file once it is open.
There are several possibilities, of which getc and putc are the simplest. getc
returns the next character from a file; it needs the file pointer to tell it which
file.

FILE ACCESS 161SECTION 7.5



is the inverse of fopen; it breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for
another file. Since most operating systems have some limit on the number of
files that a program may have open simultaneously, it's a good idea to free file
pointers when they are no longer needed, as we did in cat. There is also
another reason for f close on an output file-it flushes the buffer in which
putc is collecting output. fclose is called automatically for each open file
when a program terminates normally. (You can close stdin and stdout if
they are not needed. They can also be reassigned by the library function
freopen.)

int fclose(FILE *fp)

The file pointers stdin and stdout are objects of type FILE*. They are
constants, however,not variables, so it is not possible to assign to them.

The function

}

while «c = getc(ifp» 1= EOF)
putc(c, ofp);

int c;

1* filecopy: copy file ifp to file ofp *1
void filecopy(FILE *ifp, FILE *ofp)
{

}
return 0;

}

if (argc == 1) 1* no args; copy standard input *1
filecopy(stdin, stdout);

else
while (--argc > 0)

if « fp = fopen(*++argv, "r") == NULL) {
printf("cat: can't open "s\n", *argv);
return 1;

} else {
filecopy(fp, stdout);
fclose (fp);

FILE *fp;
void filecopy(FILE *, FILE *);

1* cat: concatenate files, version 1 *1
main(int argc, char *argv[])
{

#include <stdio.h>

CHAPTER 7162 INPUT AND OUTPUT



}

The program signals errors two ways. First, the diagnostic output produced
by fprintf goes onto stderr, so it finds its way to the screen instead of
disappearing down a pipeline or into an output file. We included the program
name, from arqv[0 ], in the message, so if this program is used with others,
the source of an error is identified. '

Second, the program uses the standard library function exit, which ter­
minates program execution when it is called. The argument of exit is avail­
able to whatever process called this one, so the success or failure of the program
can be tested by another program that uses this one as a sub-process.

exit(O);
}

if (ferror(stdout» {
fprintf(stderr, "%s: error writing stdout\n", prog);
exit(2);

}

while (--argc > 0)
if «fp = fopen(*++argv, "r"}) == NULL) {

fprintf(stderr, "%s: can't open %s\n" ,
prog, *argv);

exit(1);
} else {

filecopy(fp, stdout);
fclose(fp);

if (argc == 1) 1* no args; copy standard input *1
filecopy(stdin, stdout);

else

FILE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[O); 1* progr~m name for errors *1

1* cat: concatenate files, version 2 *1
main(int argc, char *argv[)
{

7.6 Error Handllng-Stderr and Exit
The treatment of errors in cat is not ideal. The trouble is that if one of the

files can't be accessed for some reason, the diagnostic is printed at the end of
the concatenated output. That might be acceptable if the output is going to a
screen, but not if it's going into a file or into another program via a pipeline.

To handle this situation better, a second output stream, called stderr, is
assigned to a program in the same way that stdin and stdout arc. Output
written on stderr normally appears on the screen even if the standard output
is redirected.

Let us revise cat to write its error messages on the standard error.
#include <stdio.h>

ERROR HANDLING-STDERR AND EXIT 163SECTION 7.6



It returns EOFif an error occurs, and zero otherwise.
The library functions gets and puts are similar to fgets and fputs, but

operate on stdin and stdout. Confusingly, gets deletes the terminal ' \n' ,
and puts adds it.

To show that there is nothing special about functions like fgets and
fputs, here they are, copied from the standard library on our system:

int fputs(char *line, FILE *fp)

fqets reads the next input line (including the newline) from file fp into the
character array line; at most maxline-1 characters will be read. The result­
ing line is terminated with '\0'. Normally fgets returns line; on end of
file or error it returns NULL.(Our getline returns the line length, which is a
more useful value; zero means end of file.)

For output, the function fputs writes a string (which need not contain a
newline) to a file:

char *fgets(char *line, int maxline, FILE *fp)

7.7 Line Input and Output
The standard library provides an input routine fgets that is similar to the

getline function that we have used in earlier chapters:

We have generally not worried about exit status in our small illustrative pro­
grams, but any serious program should take care to return sensible, useful status
values.

int feof(FILE *fp)

Although output errors are rare, they do occur (for example, if a disk fills up),
so a production program should check this as well.

The function f eof (FILE *) is analogous to f error; it returns non-zero if
end of file has occurred on the specified file.

int ferror(FILE *fp)

Conventionally, a return value of 0 signals that all is well; non-zero values usu­
ally signal abnormal situations. exit calls fclose for each open output file,
to flush out any buffered output.

Within main, return expr is equivalent to exit (expr). exit has the
advantage that it can be called from other functions, and that calls to it can be
found with a pattern-searching program like those in Chapter 5.

The function ferror returns non-zero if an error occurred on the stream
fp.

CHAPTER 7164 INPUT AND OUTPUT



Exercise 7-8. Write a program to print a set of files, starting each new one on a
new page, with a title and a running page count for each file. 0

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input
from a set of named files or, if no files are named as arguments, from the stand­
ard input. Should the file name be printed when a matching line is found? 0

Exercise 7-6. Write a program to compare two files, printing the first line
where they differ. 0

}
return strlen(line);

if (fgets(line, max, stdin) == NULL)
return 0;

else

1* getline: read a line, return length *1
int getline(char *li~e, int max)
{

The standard specifies that ferror returns non-zero for error; fputs returns
EOF for error and a non-negativevalue otherwise.

It is easy to implement our getline from fgets:

1* fputs: put string s on file iop *1
int fputs(char *s, FILE dop)
{

int c;

while (c = *s++)
putc(c, iop);

return ferror(iop) ? EOF 0;
}

}

cs = s;
while (--n > 0 && (c = getc(iop» 1= EOF)

if «*cs++ = c) == '\n')
break;

*cs = '\0';
return (c == EOF && cs -- s) ? NULL s;

register int c;
register char *cs;

1* fgets: get at most n chars from iop *1
char *fgets(char *s, int n, FILE *iop)
{

LINE INPUT AND OUTPUT 165SECTION 7.7



7.8.3 Ungetc

The standard library provides a rather restricted version of the function
ungetch that we wrote in Chapter 4; it is called ungetc.

int ungetc(int c, FILE *fp)

pushes the character c back onto file fp, and returns either c, or EOF for an
error. Only one character of pushback is guaranteed per file. ungetc may be
used with any of the input functions like scanf, getc, or getchar.

non-zero if c is alphabetic, 0 if not
non-zero if c is upper case, 0 if not
non-zero if c is lower case, 0 if not
non-zero if c is digit, 0 if not
non-zero if isalpha(c)or isdigit(c),0 if not
non-zero if c is blank, tab, newline, return, formfeed, vertical tab
return c converted to upper case
return c converted to lower case

isalpha(c)
isupper(c)
islower(c)
isdigit(c)
isalnum(c)
isspace(c)
toupper(c)
tolower(c)

7.8.2 Character Class Testing and Conversion

Several functions from <ctype. h> perform character tests and conversions.
In the following, c is an int that can be represented as an unsigned char,
or EOF. The functions return into

concatenate t to end of s
concatenate n characters of t to end of s
return negative, zero, or positive for

s < t,s =::= t,or s > t
same as strcmp but only in first n characters
copy t to s
copy at most n characters of t to s
return length of s
return pointer to first c in s, or NULL if not present
return pointer to last c in s, or NULL if not present

strncmp(s,t,n)
strcpy(s,t)
strncpy(s,t,n)
strlen(s)
st.bhr(s,c)
strrchr(s,c)

strcat(s,t)
strncat(s,t,n)
strcmp(s,t)

7.8. 1 String Operations

We have already mentioned the string functions strlen, strcpy, strcat,
and strcmp, found in <string. h>. In the following, sand t are char *'s,
and c and n are ints.

The standard library provides a wide variety of functions. This section is a
brief synopsisof the most useful. More details and marty other functions can be
found in Appendix B.

7.8 Miscellaneous Functions

CHAPTER 7166 INPUT ANDOUTPUT



Section 8.7 shows the implementation of a storage allocator like meLLoc.Tn

}

for (p = head; p 1= NULL; P = q) {
q = p->next;
free(p);

1* WRONG *1for (p = head; p 1= NULL; P = p->next)
free(p);

The right way is to save whatever is needed before freeing:

free (p) frees the space pointed to by p, where p was originally obtained
by a call to malloc or calloc. There are no restrictions on the order in
which space is freed, but it is a ghastly error to free something not obtained by
calling calloc or malloc.

It is also an error to use something after it has been freed. A typical but
incorrect piece of code is this loop that frees items from a list:

ip = (int *) calloc(n, sizeof(int»;

int dp;

returns a pointer to enough space for an array of n objects of the specified size,
or NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer returned by malloc or ce l.Loc has the proper alignment for
the object in question, but it must be cast into the appropriate type, as in

void *calloc(size_t n, size_t size)

returns a pointer to n bytes of uninitialized storage, or NULL if the request can­
not be satisfied.

7.8.5 Storage Management

The functionsmalloc and calloc obtain blocks of memory dynamically.
void *malloc(size_t n)

causes the program date to be run; it prints the date and time of day on the
standard output. system returns a system-dependent integer status from the
command executed. In the UNIX system, the status return is the value returned
by exit.

system("date");

7.8.4 Command Execution

The function system( char *s) executes the command contained in the
character string s, then resumes execution of the current program. The con­
tents of s depend strongly on the local operating system. As a trivial example,
on UNIX systems, the statement

MISCELLANEOUS FUNCTIONS 167SECTION 7.8



Exercise 7-9. Functions like isupper can be implemented to save space or to
save time. Explore both possibilities. 0

#define frand() «double) rand() / (RAND_MAX+1.0»

(If your library already provides a function for floating-point random numbers,
it is likely to have better statistical properties than this one.)

The function srand (unsigned) sets the seed for rand. The portable
implementation of rand and srand suggested by the standard appears in Sec­
tion 2.7.

7 .S. 7 Random Number Generation

The function rand ( ) computes a sequence of pseudo-random integers in the
range zero to RAND_MAX,which is defined in <stdlib.h>. One way to pro­
duce random floating-point numbers greater than or equal to zero but less than
one is

sine of x, x in radians
cosine of x, x in radians
arctangent of y Ix, in radians
exponential function e"
natural (base e) logarithm of x (x> 0)
common (base 10) logarithm of x (x> 0)
xy
square root of x (x ~O)
absolute value of x

sin(x)
cos(x)
atan2(y,x)
exp(x)
log(x)
log10(x)
pow(x,y)
sqrt(x)
fabs(x)

7.S.6 Mathematical Functions

There are more than twenty mathematical functions declared in <math. h»;
here are some of the more frequently used. Each takes one or two double
arguments and returns a double.

which allocated blocksmay be freed in any order.

CHAPTER 7168 INPUT AND OUTPUT



169

8.1 File Descriptors
In the UNIX operating system, all input and output is done by reading or

writing files, because all peripheral devices, even keyboard and screen, are files
in the file system. This means that a single homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before you read or write a file, you must inform
the system of your intent to do so, a process called opening the file. If you are
going to write on a file it may also be necessary to create it or to discard its pre­
vious contents. The system checks your right to do so (Does the file exist? Do

The UNIX operating system provides its services through a set of system
calls, which are in effect functions within the operating system that may be
called by user programs. This chapter describes how to use some of the most
important system calls from C programs. If you use UNIX, this should be
directly helpful, for it is sometimes necessary to employ system calls for max­
imum efficiency, or to access some facility that is not in the library. Even if
you use C on a different operating system, however,you should be able to glean
insight into C programming from studying these examples; although details
vary, similar code will be found on any system. Since the ANSI C library is in
many cases modeled on UNIX facilities, this code may help your understanding
of the library as well.

The chapter is divided into three major parts: input/output, file system, and
storage allocation. The first two parts assume a modest familiarity with the
external characteristics of UNIX systems.

Chapter 7 was concerned with an input/output interface that is uniform
across operating systems. On any particular system the routines of the standard
library have to be written in terms of the facilities provided by the host system.
In the next few sections we will describe the UNIX system calls for input and
output, and show how parts of the standard library can be implemented with
them.

CHAPTER 8: The UNIX System Interface



Each call returns a count of the number of bytes transferred. On reading, the
number of bytes returned may be less than the number requested. A return
value of zero bytes implies end of file, and -1 indicates an error of some sort.
For writing, the return value is the number of bytes written; an error has
occurred if this isn't equal to the number requested.

Any number of bytes can be read or written in one call. The most common
values are 1, which means one character at a time ("unbuffered"), and a
number like 1024 or 4096 that corresponds to a physical block size on a peri­
pheral device. Larger sizes will be more efficient because fewer system calls

int n_read = read(int fd, char *buf, int n);

int n_written = write(int fd, char *buf, int n);

Input and output uses the read and write system calls, which are accessed
from C programs through two functions called read and write. For both, the
first argument is a file descriptor. The second argument is a character array in
your program where the data is to go to or come from. The third argument is
the number of bytes to be transferred.

8.2 LowLevell/O-Read andWrite

In this case, the shell changes the default assignments for file descriptors 0 and
1 to the named files. Normally file descriptor 2 remains attached to the screen,
so error messages can go there. Similar observations hold for input or output
associated with a pipe. In all cases, the file assignments are changed by the
shell, not by the program. The program does not know where its input comes
from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for
output.

proq <infile >outfile

you have permission to access it?), and if all is well, returns to the program a
small non-negative integer called a file descriptor. Whenever input or output is
to be done on the file, the file descriptor is used instead of the name to identify
the file. (A file descriptor is analogous to the file pointer used by the standard
library, or to the file handle of MS-DOS.) All information about an open file is
maintained by the system; the user program refers to the file only by the file
descriptor.

Since input and output involvingkeyboard and screen is so common, special
arrangements exist to make this convenient. When the command interpreter
(the "shell") runs a program, three files are open, with file descriptors 0, 1, and
2, called the standard input, the standard output, and the standard error. If a
program reads 0 and writes 1 and 2, it can do input and output without worry­
ing about opening files.

The user of a program can redirect 1/0 to and from files with < and >:

CHAPTER8170 THE UNIX SYSTEM INTERFACE



c must be a char, because read needs a character pointer. Casting c to
uns igned char in the return statement eliminates any problem of sign exten­
sion.

The second version of getchar does input in big chunks, and hands out the
characters one at a time.

}
return (read(O, &c, 1) -- 1) ? (unsigned char) c EOF;

char c;

1* getchar: unbuffered single character input *1
int getchar(void)
{

#include "syscalls.h"

We have collected function prototypes for the system calls into a file called
syscalls. h so we can include it in the programs of this chapter. This name
is not standard, however.

The parameter BUFSIZis also defined in syscalls. h; its value is a good
size for the local system. If the file size is not a multiple of BUFSIZ,some
read will return a smaller number of bytes to be written by write; the next
call to read after that will return zero.

It is instructive to see how read and write can be used to construct
higher-level routines like getchar, putchar, etc. For example, here is a ver­
sion of getchar that does unbuffered input, by reading the standard input one
character at a time.

}

while «n = read(O, buf, BUFSIZ» > 0)
write(1, buf, n);

return 0;

int n;
char buf[BUFSIZ];

maine) 1* copy input to output *1
{

#include "syscalls.h"

will be made.
Putting these facts together, we can write a simple program to copy its input

to its output, the equivalent of the file copying program written for Chapter 1.
This program will copy anything to anything, since the input and output can be
redirected to any file or device.

LOW LEVEL I/O-READ AND WRITE 171SECTION 8.2



As with fopen, the name argument is a character string containing the
filename. The second argument, flags, is an int that specifies how the file is
to be opened; the main values are

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for both reading and writing

These constants are defined in <fcnt1.h> on System V UNIXsystems, and in
<sys/file. h> on Berkeley (BSO)versions.

To open an existing file for reading,
fd = open(name, O_RDONLY, 0);

fd • open(name, flags, perms);

int fd;
int open(char *name, int flags, int perms);

8.3 Open, Creat, Close, Unlink.
Other than the default standard input, output and error, you must explicitly

open files in order to read or write them. There are two system calls for this,
open and crea t [sic].

open is rather like the fopen discussed in Chapter 7, except that instead of
returning a file pointer, it returns a file descriptor, which is just an into open
returns - 1 if any error occurs.

#include <fcntl.h>

If these versionsof getchar were to be compiledwith <stdio .h> included, it
would be necessary to #Undef the name getchar in case it is implemented as
a macro.

}
return (--n >= 0) ? (unsigned char) *bufp++ : EOF;
}

if (n == 0) { 1* buffer is empty *1
n = read(O, buf, sizeof buf);
bufp = buf;

static char buf[BUFSIZ];
static char *bufp = buf;
static int n = 0;

1* getchar: simple buffered version *1
int getchar(void)
{

#include nsyscalls.h"

CHAPTER8172 THE UNIX SYSTEM INTERFACE



}

This program creates the output file with fixed permissions of 0666. With the

if (argc 1= 3)
error ("Usage: cp from to");

if «f1 = open(arqv[1], O_RDONLY, 0» == -1)
error("cp: can't open "s", arqv[1]);

if «f2 = creat(arqv[2], PERMS» == -1)
error("cp: can't create "s, mode "030",

arqv[2], PERMS);
while «n = read(f1, buf, BUFSIZ» > 0)

if (write(f2, buf, n) 1= n)
error("cp: write error on file "s", arqv[2]);

return OJ

int f1, f2, n;
char buf[BUFSIZ];

1* cp: copy f1 to f2 *1
main(int argc, char *arqv[])
{

void error(char *, ...);

fd = creat(name, perms);

returns a file descriptor if it was able to create the file, and -1 if not. If the
file already exists, ere at will truncate it to zero length, thereby discarding its
previous contents; it is not an error to erea t a file that already exists.

If the file does not already exist, ereat creates it with the permissions
specified by the perms argument. In the UNIX file system, there are nine bits
of permission information associated with a file that control read, write and exe­
cute access for the owner of the file, for the owner's group, and for all others.
Thus a three-digit octal number is convenient for specifying the permissions.
For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyoneelse.

To illustrate, here is a simplified version of the UNIX program cp, which
copies one file to. another. Our version copies only one file, it does not permit
the second argument to be a directory, and it invents permissions instead of
copying them.

#include <stdio.h>
#include <fcntl.h>
#include "syscalls.h"
#define PERMS 0666 1* RW for owner, group, others *1

The perms argument is always zero for the uses of open that we will discuss.
It is an error to try to open a file that does not exist. The system call

ereat is provided to create new files, or to re-write old ones.
int creat(char *name, int perms);

OPEN, CREAT, CLOSE, UNLINK 173SECTION 8.3



Input and output are normally sequential: each read or write takes place
at a position in the file right after the previous one. When necessary, however,
a file can be read or written in any arbitrary order. The system call lseek
provides a way to move around in a file without reading or writing any data:

8.4 RandomAccess-Lseek

}

There is a limit (often about 20) on the number of files that a program may
have open simuitaneously. Accordingly, any program that intends to process
many files must be prepared to re-use file descriptors. The function
close (int fd) breaks the connection between a file descriptor and an open
file, and frees the file descriptor for use with some other file; it corresponds to
fclose in the standard library except that there is no buffer to flush. Termi­
nation of a program via exi t or return from the main program closes all open
files.

The function unl ink (char *name) removes the file namefrom the file
system. It corresponds to the standard library function remove.

Exercise 8-1. Rewrite the program cat from Chapter 7 using read, write,
open and close instead of their standard library equivalents. Perform experi­
ments to determine the relative speeds of the two versions. 0

va_start(args, fmt);
fprintf(stderr, "error: H);
vfprintf(stderr, fmt, args);
fprintf(stderr, "\n");
va_end(args);
exit(1);

va_list ~rgs;

1* error: print an error message and die *1
void error(char *fmt, ...)
{

stat system call, described in Section 8.6, we can determine the mode of an
existing file and thus give the same mode to the cqpy.

Notice that the function error is called with variable argument lists much
like printf. The implementation of error illustrates how to use another
member of the printf family. The standard library function vprintf is like
printf except that the variable argument list is replaced by a single argument
that has been initialized by calling the va_start macro. Similarly,
vfprintf and vsprintf match fprintf and sprintf.

#include <stdio.h>
#include <stdarg.h>

CHAPTER8174 THE UNIX SYSTEM INTERFACE



8.5 Example-An Implementation ot Fopen and Gete
Let us illustrate how some of these pieces fit together by showing an imple­

mentation of the standard library routines fopen and gete.
Recall that files in the standard library are described by file pointers rather

than file descriptors. A file pointer is a pointer to a structure that contains
several pieces of information about the file: a pointer to a buffer, so the file can
be read in large chunks; a count of the number of characters left in the buffer; a
pointer to the next character position in the buffer; the file descriptor; and flags
describing read/write mode, error status, etc.

The return value from lseek is a long that gives the new position in the file,
or -1 if an error occurs. The standard library function fseek is similar to
lseek except that the first argument is a FILE * and the return is non-zero if
an error occurred.

}
return -1;

1* get: read n bytes from position pos *1
int get(int fd, long pos, char *buf, int n)
{

if (lseek(fd, pos, 0) >= 0) 1* get to pos *1
return read(fd, buf, n);

else

#include "syscalls.h"

long lseek(int fd, long offset, int origin);

sets the current position in the file whose descriptor is fd to offset, which is
taken relative to the location specified by origin. Subsequent reading or writ­
ing will begin at that position. origin can be 0, 1, or 2 to specify that
offset is to be measured from the beginning, from the current position, or
from the end of the file respectively. For example, to append to a file (the
redirection > > in the UNIXshell, or IIa II for f open), seek to the end before
writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),
lseek(fd, OL, 0);

Notice the OLargument; it could also be written as (long) 0 or just as 0 if
lseek is properly declared.

With lseek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following function reads any number of
bytes from any arbitrary place in a file. It returns the number read, or -1 on
error.

EXAMPLE-AN IMPLEMENTATIONOF FOPENANDGETC 175SECTION 8.S



The getc macro normally decrements the count, advances the pointer, and

getc(stdin)
putc«x), stdout)

#define getchar()
#define putchar(x)

#define getc(p) (--(p)->cnt >= 0 \
? (unsigned char) *(p)->ptr++ : _fillbuf(p»

#define putc(x,p) (--(p)->cnt >= 0 \
? *(p)->ptr++ = (x) : _flushbuf«x),p»

«(p)->flag & _EOF) 1= 0)
(((p)->flag & _ERR) 1= 0)
((p)->fd)

#define feof(p)
#define ferror(p)
#define fileno(p)

int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

enum _flags {
READ = 01, 1* file open for reading *1_
WRITE = 02, 1* file open for writing *1-UNBUF = 04, 1* file is unbuffered *1-
EOF = 010, 1* EOF has occurred on this file *1_
ERR = 020 1* error occurred on this file *1_

};

(&_iob[0])
(&_iob[1])
(&_iob[2])

#de'finestdin
#define stdout
#define stderr

typedef struct iobuf {
int cnt; 1* characters left *1
char *ptr; 1* next character position *1
char *base; 1* location of buffer *1
int flag; 1* mode of file access *1
int fd; 1* file descriptor *1

} FILE;
extern FILE _iob[OPEN_MAX];

The data structure that describes a file is contained in <stdio. h>,which
must be included (by #include) in any source file that uses routines from the
standard input/output library. It is also included by functions in that library.
In the following excerpt from a typical <stdio. h>, names that are intended
for use only by functions of the library begin with an underscore so they are less
likely to collide with names in a user's program. This convention is used by all
standard library routines.

#define NULL 0
#define EOF (-1)
#define BUFSIZ 1024
#define OPEN_MAX 20 1* max #files open at once *1

CHAPTER8176 THE UNIX SYSTEMINTERFACE



}

This version of fopen does not handle all of the access mode possibilitiesof the

_WRITE;

if (*mode == 'w')
fd = creat(name, PERMS);

else if (*mode == 'a') {
if «fd = open(name, O_WRONLY, 0» -- -1)

fd = creat(name, PERMS);
lseek(fd, OL, 2);

} else
fd = open(name, O_RDONLY, 0);

if (fd == -1) 1* COUldn't access name *1
return NULL;

fp->fd = fd;
fp->cnt = 0;
fp->base = NULL;
fp->flaq = (*mode == 'r') ? _READ
return fp;

if (*mode 1= 'r' && *mode 1= 'w' && *mode 1= 'a')
return NULL;

for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
if «fp->flag & (_READ I _WRITE» == 0)

break; 1* found free slot *1
if (fp >= iob + OPEN_MAX) 1* no free slots *1

return NULL;

int fd;
FILE *fp;

1* fopen: open file, return file ptr *1
FILE *fopen(char *name, char *mode)
{

returns the character. (Recall that a long #define is continued with a
backslash.) If the count goes negative, however, getc calls the function
_f i Ilbuf to replenish the buffer, re-initialize the structure contents, and
return a character. The characters are returned unsigned, which ensures that
all characters will be positive.

Although we will not discuss any details, we have included the definition of
putc to show that it operates in much the same way as getc, calling a func­
tion _flushbuf when its buffer is full. We have also included macros for
accessing the error and end-of-file status and the file descriptor.

The function fopen can now be written. Most of fopen is concerned with
getting the file opened and positioned at the right place, and setting the flag bits
to indicate the proper state. fopen does not allocate any buffer space; this is
done by _fillbuf when the file is first read.

#include <fcntl.h>
#include "syscalls.h"
#define PERMS 0666 1* RW for owner, group, others *1

EXAMPLE-AN IMPLEMENTATIONOF FOPENANDGETC 177SECTION 8.5



};

The initialization of the flag part of the structure shows that stdin is to be
read, stdout is to be written, and stderr is to be written unbuffered.

Exercise 8-2. Rewrite fopen and _fillbuf with fields instead of explicit bit

}

The only remaining loose end is how everything gets started. The array
_iob must be defined and initialized for stdin, stdout and stderr:

FILE _iob[OPEN_MAX] = { 1* stdin, stdout, stderr: *1
{ 0, (char *) 0, (char *) 0, _READ, 0 },
{ 0, (char *) 0, (char *) 0, _WRITE, 1 },
{ 0, (char *) 0, (char *) 0, _WRITE 1 _UNBUF, 2 }

return (unsigned char) *fp->ptr++;
}

if «fp->flag&(_READI_EOFI_ERR» 1= _READ)
return EOF;

bufsize = (fp->flag & _UNBUF) ? 1 : BUFSIZ;
if (fp->base == NULL) 1* no buffer yet *1

if «fp->base = (char *) malloc(bufsize» -- NULL)
return EOF; 1* can't get buffer *1

fp->ptr = fp->base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {

if (fp->cnt == -1)
fp->flag 1= _EOF;

else
fp->flag 1= _ERR;

fp->cnt = 0;
return EOF;

int bufsize;

1* fillbuf: allocate and fill input buffer *1
int _fillbuf(FILE *fp)
{

standard, though adding them would not take much code. In particular, our
fopen does not recognize the "b" that signals binary access, since that is
meaningless on UNIX systems, nor the "+" that permits both reading and writ­
ing.

The first call to getc for a particular file finds a count of zero, which forces
a call of _fillbuf. If _fillbuf finds that the file is not open for reading, it
returns EOF immediately. Otherwise, it tries to allocate a buffer (if reading is
to be buffered).

Once the buffer is established, _fillbuf calls read to fill it, sets the count
and pointers, and returns the character at the beginning of the buffer. Subse­
quent calls to _fillbuf will find a buffer allocated.

#include "syscalls.h"

CHAPTER8178 THE UNIX SYSTEM INTERFACE



8.6 Example- Listing Directories
A different kind of file system interaction is sometimes called for­

determining information about a file, not what it contains. A directory-listing
program such as the UNIX command Is is an example-it prints the names of
files in a directory, and, optionally, other information, such as sizes, permissions,
and so on. The MS-DOS dir command is analogous.

Since a UNIX directory is just a file, 1s need only read it to retrieve the
filenames. But it is necessary to use a system call to access other information
about a file, such as its size. On other systems, a system call may be needed
even to access filenames; this is the case on MS-DOS, for instance. What we
want is provide access to the information in a relatively system-independent
way, even though the implementation may be highly system-dependent.

We will illustrate some of this by writing a program called fsize. fsize
is a special form of Is that prints the sizes of all files named in its command­
line argument list. If one of the files is a directory, fsize applies itself recur­
sively to that dire_ctory. If there are no arguments at all, it processes the
current directory.

Let us begin with a short review of UNIX file system structure. A directory
is a file that contains a list of filenames and some indication of where they are
located. The "location" is an index into another table called the "inode list."
The inode for a file is where all information about a file except its name is kept.
A directory entry generally consists of only two items, the filename and an
inode number.

Regrettably, the format and precise contents of a directory are not the same
on all versions of the system. So we will divide the task into two pieces to try to
isolate the non-portable parts. The outer level defines a structure called a
Dirent and three routines opendir, readdir, and closedir to provide
system-independent access to the name and inode number in a directory entry.
We will write fsize with this interface. Then we will show how to implement
these on systems that use the same directory structure as Version 7 and System
V UNIX; variants are left as exercises.

operations. Compare code size and execution speed. 0

Exercise 8-3. Design and write _flushbuf, fflush, and fclose. 0

Exercise 8-4. The standard library function
int fseek(FILE *fp, long offset, int origin)

is identical to Iseek except that fp is a file pointer instead of a file descriptor
and the return value is an int status, not a position. Write fseek. Make sure
that your fseek coordinates properly with the buffering done for the other
functions of the library. 0

EXAMPLE-LISTING DIRECTORIES 179SECTION 8.6



stat(name, &stbuf);

fills the structure stbuf with the inode information for the file name. The
structure describing the value returned by stat is in <sys/stat. h>, and typ­
ically looks like this:

char *name;
struct stat stbuf;
int stat(char *, struct stat *);

DIR *opendir(char *dirname);
Dirent *readdir(DIR *dfd);
void closedir(DIR *dfd);

The system call stat takes a filename and returns all of the information in
the inode for that file, or -1 if there is an error. That is,

1* minimal DIR: no buffering, etc. *1
1* file descriptor for directory *1
1* the directory entry *1

typedef struct {
int fd;
Dirent d;

} DIR;

1* name + '\0' terminator *1

1* portable directory entry: *1
1* inode number *1long ino;

char name[NAME_MAX+1];
} Dirent;

typedef struct {

#define NAME_MAX 14 1* longest filename component; *1
1* system-dependent *1

The Dirent structure contains the inode number and the name. The max­
imum length of a filename component is NAME_MAX, which is a system­
dependent value. opendir returns a pointer to a structure called DIR,analo­
gous to FILE,which is used by readdir and closedir. This information is
collected into a file called dirent. h.

CHAPTER 8180 THE UNIX SYSTEM INTERFACE



The function fsize prints the size of the file. If the file is a directory,
however, fsize first calls dirwalk to handle all the files in it. Note how the
flag names S_IFMTand S_IFDIR from <sys/stat. h> are used to decide if
the file is a directory. Parenthesization matters, because the precedence of &. is
lower than that of ==.

}

if (argc == 1) 1* default: current directory *1
fsize(".");

else
while (--argc > 0)

fsize(*++arqv);
return 0;

1* print file sizes *1
main(int argc, char **arqv)
{

void fsize(cllar*);

1* flags for read and write *1
1* typedefs *1
1* structure returned by stat *1

#include <stdio.h>
#include <string.h>
#include "syscalls.h"
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "dirent.h"

Now we are ready to write the program fsize. If the mode obtained from
stat indicates that a file is not a directory, then the size is at hand and can be
printed directly. If the file is a directory, however, then we have to process that
directory one file at a time; it may in turn contain sub-directories, so the process
is recursive.

The main routine deals with command-line arguments; it hands each argu­
ment to the function fsize.

#define S_IFMT 0160000 1* type of file: *1
#define S_IFDIR 0040000 1* directory *1
#define S_IFCHR 0020000 1* character special *1
#define S_IFBLK 0060000 1* block special *1
#define S_IFREG 0100000 1* regular *1

1* ... *1

dev_t and ino_ t are defined in <sys/types. h>, which must be included
too.

The st_mode entry contains a set of flags describing the file. The flag
definitions are also included in <sys/stat. h>; we need only the part that
deals with file type:

EXAMPLE-LISTING DIRECTORIES 181SECTION 8.6



Each call to readdir returns a pointer to information for the next file, or

}

}
closedir(dfd) ;

}

8printf (name, ""S/"8", dir, dp->name);
(*fcn) (name);

else {

while « dp = readdir (dfd» I= NULL) {
if (strcmp(dp->name, ".") == 0
I I strcmp(dp->name, ".•") == 0)

continue; 1* skip self and parent *1
it (strl~n(dir)+strlen(dp->na~e)+2 > sizeof(name»

fprintf(stderr, "dirwalk: name "8/"s too long'n",
dir, dp->name) ;

}
return;

if «dfc1 = opendir(dir» == NULL) {
fprintf(stcierr, "dirwalk: can't open "s'n", dir);

char name[MAX_PATH];
Oirent *dl>;
OIR *dfd;

1* dirwalk: apply fcn to all files in dir *1
void dirwalk(char *dir, void (*fcn)(char *»
{

The function dirwalk is a general routine that applies a function to each
file in a directory. It opens the directory, loops through the files in it, calling
the function on each, then closes the directory and returns. Since f~ize calls
dirwalk on each directory, the two functions call each other recursively.

#define MAX_PATH 1024

}

}
if «stbu,f.st_mode & S_IFMT) == S_IFOIR)

dirwalk(name, fsize);
printf(~"8ld "s'n", stbuf.st_size, name);

return;

if (stat(name, &stbuf) == -1) {
fprintf(stderr, "fsize: can't access "s'n", name);

/* fsize: print size of file "name" */
void fsize(char *name)
{

struct stat stbuf;

int stat(char *, struct stat *);
void dirwalk(char *, void (*fcn)(char *»;

CHAPTER8t8l THE UNIX SYSTEM INTERFACE



closedir closes the directory file and frees the space:

}

if «fd = open(dirname, O_RDONLY, 0» == -1
II fstat(fd, &stbuf) == -1
I I (stbuf.st_mode & S_IFMT) 1= S_IFDIR
I I (dp = (DIR *) malloc(sizeof(DIR») == NULL)

return NULL;
dp->fd = fd;
return dp;

int fd;
struct stat stbuf;
DIR *dp;

1* opendir: open a directory for readdir calls *1
DIR *opendir(char *dirname)
{

int fstat(int fd, struct stat *);

Some versions of the system permit much longer names and have a more com­
plicated directory structure.

The type ino_t is a typedef that describes the index into the inode list.
It happens to be unsigned short on the system we use regularly, but this is
not the sort of information to embed in a program; it might be different on a
different system, so the typedef is better. A complete set of "system" types is
found in <sys/types. h>.

opendir opens the directory, verifies that the file is a directory (this time
by the system call fstat, which is like stat except that it applies to a file
descriptor), allocates a directory structure, and records the information:

};

ino_t d_ino; 1* inode number *1
char d_name[DIRSIZ]; 1* long name does not have '\0' *1

1* directory entry *1struct direct
{

#ifndef DIRSIZ
#define DIRSIZ 14
#endif

NULL when there are no files left. Each directory always contains entries for
itself, called ".", and its parent, " .. It; these must be skipped, or the program
will loop forever.

Down to this level, the code is independent of how directories are formatted.
The next step is to present minimal versions of opendir, readdir, and
closedir for a specific system. The followingroutines are for Version 7 and
System V UNIX systems; they use the directory information in the header
<sys/dir. h>,which looks like this:

EXAMPLE-LISTING DIRECTORIES 183SECTION 8.6



Exercise 8-5. Modify the fsize program to print the other information con­
tained in the inode entry. 0

Although the fsize program is rather specialized, it does illustrate a couple
of important ideas. First, many programs are not "system programs"; they
merely use information that is maintained by the operating system. For such
programs, it is crucial that the representation of the information appear only in
standard headers, and that programs include those files instead of embedding
the declarations in themselves. The second observation is that with care it is
possible to create an interface to system-dependent objects that is itself rela­
tively system-independent. The functions of the standard library are good
examples.

}
return NULL;
}

while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf»
== sizeof(dirbuf» {

if (dirbuf.d_ino == 0) 1* slot not in use *1
continue;

d.ino = dirbuf.d_ino;
strncpy(d.name, dirbuf.d_name, DIRSIZ);
d.name[DIRSIZ] = '\0'; 1* ensure termination *1
return &d;

struct direct dirbuf; 1* local directory structure *1
static Dirent d; 1* return: portable structure *1

1* readdir: read directory entries in sequence *1
Dirent *readdir(DIR *dp)
{

1* local directory structure *1#include <sys/dir.h>

Finally, readdir uses read to read each directory entry. If a directory
slot is not currently in use (because a file has been removed), the inode number
is zero, and this position is skipped, Otherwise, the inode number and name are
placed in a static structure and a pointer to that is returned to the user.
Each call overwrites the information from the previousone.

}
}

/* closedir: close directory opened by opendir *1
void closedir(DIR *dp)
{

if (dp) {
close (dp->fd);
free(dp) ;

CHAPTER8184 THE UNIX SYSTEMINTERFACE



When a request is made, the free list is scanned until a big-enough block is
found. This algorithm is called "first fit," by contrast with "best fit," which
looks for the smallest block that will satisfy the request. If the block is exactly
the size requested it is unlinked from the list and returned to the user. If the
block is too big, it is split, and the proper amount is returned to the user while
the residue remains on the free list. If no big-enough block is found, another
large chunk is obtained from the operating system and linked into the free list.

Freeing also causes a search of the free list, to find the proper place to insert
the block being freed. If the block being freed is adjacent to a free block on
either side, it is coalesced with it into a single bigger block, so storage does not
become too fragmented. Determining adjacency is easy because the free list is
maintained in order of increasing address.

One problem, which we alluded to in Chapter 5, is to ensure that the storage
returned by malloe is aligned properly for the objects that will be stored in it.
Although machines vary, for each machine there is a most restrictive type: if the
most restrictive type can be stored at a particular address, all other types may
be also. On some machines, the most restrictive type is a double; on others,
int or long suffices.

"'--_ .....1 free, owned by malloc

1 in use I in use, owned by malloc

1::::::: I not owned by malloc

8.7 Example-A StorageAllocator
In Chapter 5, we presented a very limited stack-oriented storage allocator.

The version that we will now write is unrestricted. Calls to malloe and free
may occur in any order; malloe calls upon the operating system to obtain more
memory as necessary. These routines illustrate some of the considerations
involved in writing machine-dependent code in a relatively machine-independent
way, and also showa real-life application of structures, unions and typedef.

Rather than allocating from a compiled-in fixed-sized array, malloe will
request space from the operating system as needed. Since other activities in the
program may also request space without calling this allocator, the space that
malloe manages may not be contiguous. Thus its free storage is kept as a list
of free blocks. Each block contains a size, a pointer to the next block, and the
space itself. The blocks are kept in order of increasing storage address, and the
last block (highest address) points to the first.
free list ~

:::::::1 :e (j7---= , !e '~~eIT::::::::':et17jl::::

EXAMPLE-A STORAGE ALLOCATOR 185SECTION 8.7



The size field is necessary because the blocks controlled by malloc need not be
contiguous-it is not possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep is NULL,as it is at the
first call of malloc, then a degenerate free list is created; it contains one block
of size zero, and points to itself. -Inany case, the free list is then searched. The
search for a free block of adequate size begins at the point (freep) where the
last block was found; this strategy helps keep the list homogeneous. If a too-big
block is found, the tail end is returned to the user; in this way the header of the
original needs only to have its size adjusted. In all cases, the pointer returned to
the user points to the free space within the block, which begins one unit beyond
the header.

A block returned by malloc

=- . points to next free block

~ul I
L___ address returned to user

The Align field is never used; it just forces each header to be aligned on a
worst-case boundary.

In malloc, the requested size in characters is rounded up to the proper
number of header-sized units; the block that will be allocated contains one more
unit, for the header itself, and this is the value recorded in the size field of the
header. The pointer returned by malloc points at the free space, not at the
header itself. The user can do anything with the space requested, but if any­
thing is written outside of the allocated space the list is likely to be scrambled.

typedef union header Header;

};
I. force alignment of blocks .1

} s;
Align x;

union header { I. block header: .1
struct {

union header .ptr; I. next block if on free list .1
unsigned size; I. size of this block .1

typedef long Align; I. for alignment to long boundary .1

A free block contains a pointer to the next block in the chain, a record of the
size of the block, and then the free space itself; the control information at the
beginning is called the "header." To simplify alignment, all blocks are multi­
ples of the header size, and the header is aligned properly. This is achieved by
a union that contains the desired header structure and an instance of the most
restrictive alignment type, which we have arbitrarily made a long:

CHAPTER8186 THE UNIX SYSTEMINTERFACE



The function moreeore obtains storage from the operating system. The
details of how it does this vary from system to system. Since asking the system
for memory is a comparatively expensiveoperation, we don't want to do that on
every call to malloe, so moreeore requests at least NALLOCunits; this larger
block will be chopped up as needed. After setting the size field, morecore
inserts the additional memory into the arena by calling free.

The UNIX system call sbrk (n ) returns a pointer to n more bytes of
storage. sbrk returns -1 if there was no space, even though NULLwould have
been a better design. The - 1 must be cast to ehar *. so it can be compared
with the return value. Again, casts make the function relatively immune to the
details of pointer representation on different machines. There is still one
assumption, however, that pointers to different blocks returned by sbrk can be
meaningfully compared. This is not guaranteed by the standard, which permits
pointer comparisons only within an array. Thus this version of malloe is port­
able only among machines for which general pointer comparison is meaningful.

}
}

if (p == freep) 1* wrapped around free list *1
if «p = morecore(nunits» == NULL)

return NULL; 1* none left *1

}

}
freep = prevp;
return (void *)(p+1);

for (p = prevp->s.ptr;, ; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) { 1* big enough *1

if (p->s.size == nunits) 1* exactly *1
prevp->s.ptr = p->s.ptr;

else { 1* allocate tail end *1
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;

}

nunits = (nbytes+sizeof(Header)-1)/sizeof(Header) + 1;
if «prevp = freep) == NULL) { 1* no free list yet *1

base.s.ptr = freep = prevp = &base;
base.s.size = 0;

1* malloc: general-purpose storage allocator *1
void *malloc(unsigned nbytes)
{

Header *p, *prevp;
Header *morecore(unsigned);
unsigned nunits;

1* empty list to get started *1
NULL; 1* start of free list *1

static Header base;
static Header *freep =

EXAMPLE-A STORAGE ALLOCATOR 187SECTION 8.7



}

Although storage allocation is intrinsically machine-dependent, the code
above illustrates how the machine dependencies can be controlled and confined
to a very small part of the program. The use of typedef and union handles

if (bp + bp->s.size == p->s.ptr) { 1* join to upper nbr *1
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;

} else
bp->s.ptr = p->s.ptr;

if (p + p->s.size == bp) { 1* join to lower nbr *1
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;

} else
p->s.ptr = bp;

freep = p;

bp = (Header *)ap - 1; 1* point to block header *1
for (p = freep; I(bp > p && bp < p->s.ptr); p = p->s.ptr)

if (p >= p->s.ptr && (bp > p l l bp < p->s.ptr»
break; 1* freed block at start or end of arena *1

}

free itself is the last thing. It scans the free list, starting at freep, look­
ing for the place to insert the free block. This is either between two existing
blocks or at one end of the list. In any case, if the block being freed is adjacent
to either neighbor, the adjacent blocks are combined. The only troubles are
keeping the pointers pointing to the right things and the sizes correct.

1* free: put block ap in free list *1
void free(void *ap)
{

Header *bp, *p;

if (nu < NALLOC)
nu = NALLOC;

cp = sbrk(nu * sizeof(Header»;
if (cp == (char *) -1) 1* no space at all *1

return NULL;
up = (Header *) cp;
up->s.size = nu;
free«void *)(up+1»;
return freep;

char *cp, *sbrk(int);
Header *up;

1* morecore: ask system for more memory *1
static Header *morecore(unsigned nu)
{

1* minimum #units to request *1#define NALLOC 1024

CHAPTER 8188 THE UNIX SYSTEM INTERFACE



alignment (given that sbrk supplies an appropriate pointer). Casts arrange
that pointer conversionsare made explicit, and even cope with a badly-designed
system interface. Even though the details here are related to storage allocation,
the general approach is applicable to other situations as well.

Exercise 8-6. The standard library function calloc (n, size) returns a
pointer to n objects of size size, with the storage initialized to zero. Write
calloc, by calling mal10cor by modifying it. 0

Exercise 8-7. mal10c accepts a size request without checking its plausibility;
free believes that the block it is asked to free contains a valid size field.
Improve these routines so they take more pains with error checking. 0

Exercise 8-8 Write a routine bfree (p, n) that will free an arbitrary block p
of n characters into the free list maintained by mal10c and free. By using
bfree, a user can add a static or external array to the free list at any time. 0

EXAMPLE-A STORAGE ALLOCATOR 189SECTION 8.7





191

There are six classes of tokens: identifiers, keywords, constants, string literals, opera­
tors, and other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and
comments as described below (collectively, "white space") are ignored except as they
separate tokens. Some white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

A2.1 Tokens

A program consists of one or more translation units stored in files. It is translated
in several phases, which are described in §A12. The first phases do low-level lexical
transformations, carry out directives introduced by lines beginning with the # character,
and perform macro definition and expansion. When the preprocessing of §A12 is com­
plete, the program has been reduced to a sequence of tokens.

A2. LexicalConventions

This manual describes the C language specified by the draft submitted to ANSI on
31 October, 1988, for approval as "American National Standard for Information
Systems-Programming Language C, X3.159-1989." The manual is an interpretation of
the proposed standard, not the Standard itself, although care has been taken to make it
a reliable guide to the language.

For the most part, this document follows the broad outline of the Standard, which in
turn follows that of the first edition of this book, although the organization differs in
detail. Except for renaming a few productions, and not formalizing the definitions of the
lexical tokens or the preprocessor, the grammar given here for the language proper is
equivalent to that of the Standard.

Throughout this manual, commentary material is indented and written in
smaller type, as this is. Most often these comments highlight ways in which
ANSI Standard C differs from the language defined by the first edition of this
book, or from refinements subsequently introduced in various compilers.

A1. Introduction

APPENDIX A: Reference Manual



constant:
integer-constant
character-constant
floating-constant
enumeration -constant

A2.5 Constants

There are several kinds of constants. Each has a data type; §A4.2discussesthe basic
types.

Some implementationsalso reserve the words fortran and asm.
The keywords const, signed, and volatile are new with the ANSI stand­
ard; enumand void are new since the first edition, but in common use;
entry, formerly reserved but never used, is no longer reserved.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

A2.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

A2.3 Identifiers

An identifier is a sequence of letters and digits. The first character must be a letter;
the underscore _ counts as a letter. Upper and lower case letters are different. Identi­
fiers may have any length, and for internal identifiers, at least the first 31 characters are
significant; some implementationsmay make more characters significant. Internal iden­
tifiers include preprocessormacro names and all other names that do not have external
linkage (§AI1.2). Identifiers with external linkage are more restricted: implementations ,"
may make as few as the first six characters as significant, and may ignore case distinc­
tions.

The characters 1* introduce a comment, which terminates with the characters *1.
Comments do not nest, and they do not occur within string or character literals.

A2.2 Comments

If the input stream has been separated into tokens up to a given character, the next
token is the longest string of characters that could constitute a token.

APPENDIX A192 REFERENCE MANUAL



The escape \000 consists of the backslash followed by I, 2, or 3 octal digits, which are
taken to specify the value of the desired character. A common example of this construc­
tion is \0 (not followed by a digit), which specifies the character NUL. The escape
\xhh consists of the backslash, followed by x, followed by hexadecimal digits, which are
taken to specify the value of the desired character. There is no limit on the number of
digits, but the behavior is undefined if the resulting character value exceeds that of the
largest character. For either octal or hexadecimal escape characters, if the implementa­
tion treats the char type as signed, the value is sign-extended as if cast to char type.
If the character following the \ is not one of those specified, the behavior is undefined.

In some implementations, there is an extended set of characters that cannot be
represented in the char type. A constant in this extended set is written with a preced­
ing L, for example L' x " and is called a wide character constant. Such a constant has
type wchar_t, an integral type defined in the standard header <stddef. h>. As with

vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
audible alert BEL \a

A character constant is a sequence of one or more characters enclosed in single
quotes, as in ' x '. The value of a character constant with only one character is the
numeric value of the character in the machine's character set at execution time. The
value of a multi-character constant is implementation-defined.

Character constants do not contain the ' character or newlines; in order to represent
them, and certain other characters, the following escape sequences may be used.

newline NL (LF) \n backs lash \ \ \
horizontal tab HT \ t question mark? \?

single quote \'
double quote " \ "
octal number 000 \000

hex number hh \xhh

A2.5.2 Character Constants

A2.5.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins
with 0 (digit zero), decimal otherwise. Octal constants do not contain the digits 8 or 9.
A sequence of digits preceded by Ox or Ox (digit zero) is taken to be a hexadecimal
integer. The hexadecimal digits include a or A through f or F with values 10 through
15.

An integer constant may be suffixed by the letter u or U, to specify that it is
unsigned. It may also be suffixed by the letter 1or L to specify that it is long.

The type of an integer constant depends on its form, value and suffix. (See §A4 for
a discussion of types.) If it is unsuffixed and decimal, it has the first of these types in
which its value can be represented: int, long int, unsigned long into If it is
unsuffixed octal or hexadecimal, it has the first possible of these types: int, unsigned
int, long int, unsigned long into If it is suffixed by u or u, then unsigned
int, unsigned long into If it is suffixed by 1 or L, then long int, unsigned
long into

The elaboration of the types of integer constants goes considerably beyond the
first edition, which merely caused large integer constants to be long. The U
suffixes are new.

LEXICAL CONVENTIONS 193SECTION A2



In the syntax notation used in this manual, syntactic categories are indicated by
italic type, and literal words and characters in typewriter style. Alternative
categories are usually listed on separate lines; in a few cases, a long set of narrow alter­
natives is presented on one line, marked by the phrase "one of." An optional terminal or
nonterminal symbol carries the subscript "opt ," so that; for example,

A3. SyntaxNotation

A2.6 String Literals

A string literal, also called a string constant, is a sequence of characters surrounded
by double quotes, as in " ... ". A string has type "array of characters" and storage
class static (see §A4 below) and is initialized with the given characters. Whether
identical string literals are distinct is implementation-defined, and the behavior of a pro­
gram that attempts to alter a string literal is undefined.

Adjacent string literals are concatenated into a single string. After any concatena­
tion, a null byte \0 is appended to the string so that programs that scan the string can
find its end. String literals do not contain newline or double-quote characters; in order
to represent them, the same escape sequences as for character constants are available.

As with character constants, string literals in an extended character set are written
with a preceding L, as in L" ••• ". Wide-character string literals have type "array of
wchar_t." Concatenation of ordinary and wide string literals is undefined.

The specification that string literals need not be distinct, and the prohibition
against modifying them, are new in the ANSI standard, as is the concatenation
of adjacent string literals. Wide-character string literals are new.

A2.S.4 EnumerationConstants

Identifiers declared as enumerators (see §A8.4) are constants of type into

A2.S.3 Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e
or E, an optionally signed integer exponent and an optional type suffix, one of f, F, 1, or
L. The integer and fraction parts both consist of a sequence of digits. Either the integer
part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. The type is determined by the suffix; F or
f makes it float, Lor 1 makes it long double; otherwise it is double.

Suffixes on floating constants are new.

ordinary character constants, octal or hexadecimal escapes may be used; the effect is
undefined if the specified value exceeds that representable with wchar_t.

Some of these escape sequences are new, in particular the hexadecimal charac­
ter representation. Extended characters are also new. The character sets com­
monly used in the Americas and western Europe can be encoded to fit in the
char type; the main intent in adding wchar _t was to accommodate Asian
languages.

APPENDIX A194 REFERENCE MANUAL



A4.2 Basic Types

There are several fundamental types. The standard header <limits. h> described
in Appendix B defines the largest and smallest values of each type in the local imple­
mentation. The numbers given in Appendix B show the smallest acceptable magnitudes.

Objects declared as characters (char) are large enough to store any member of the
execution character set. If a genuine character from that set is stored in a char object,
its value is equivalent to the integer code for the character, and is non-negative. Other
quantities may be stored into char variables, but the available range of values, and
especially whether the value is signed, is implementation-dependent. '

Unsigned characters declared unsigned char consume the same amount of space
as plain characters, but always appear non-negative; explicitly signed characters declared
signed c~ar likewise take the same space as plain characters.

A4.1 Storage Class

There are two storage classes: automatic and static. Several keywords, together with
the context of an object's declaration, specify its storage class. Automatic objects are
local to a block (§A9.3), and are discarded on exit from the block. Declarations within a
block create automatic objects if no storage class specification is mentioned, or if the
auto specifier is used. Objects declared register are automatic, and are (if possible)
stored in fast registers of the machine.

Static objects may be local to a block or external to all blocks, but. in either case
retain their values across exit from and reentry to functions' and blocks. Within ~ block,
including a block that provides the code for a function, static objects are declared with
the keyword static. The objects declared outside all blocks, atthe same level as func­
tion definitions, are always static. They may be made local to a particular translation
unit by useofthe static keyword; this gives them internal linkage, they become glo­
bal to an entire program by omitting an explicit storage class, or by using the keyword
extern; this gives them external linkage.

Identifiers, or names, refer to a variety of things: functions; tags of structures,
unions, and enumerations; members of structures or unions; enumeration constants;
typedef names; and objects. An object, sometimes called a variable, is a location in
storage, and its interpretation depends on two main attributes: its storage class and its
type. The storage class determines the lifetime of the storage associated with the identi­
fied object; the type determines the meaning of the values found in the identified object.
A name also has a scope, which is the region of the program in which it is known, and a
linkage, which determines whether the same name in another scope refers to the same
object or function. Scope and linkage are discussed in §A11.

A4. Meaningof Identifiers

{ expressionopt }

means an optional expression, enclosed in braces. The syntax is summarized in §A13.
Unlike the grammar given in the first edition of this book, the one given here
makes precedence and associativity of expression operators explicit.

MEANING OF IDENTIFIERS 195SECTION A4



A4.4 Type Qualifiers

An object's type may have additional qualifiers. Declaring an object const
announces that its value will not be changed; declaring it volatile announces that it
has special properties relevant to optimization. Neither qualifier affects the range of
values or arithmetic properties of the object. Qualifiers are discussed in §A8.2.

A4.3 Derived Types

Besides the basic types, there is a conceptually infinite class of derived types con-
structed from the fundamental types in the followingways:

arrays. of objects.of a given type;
functions returning objects of a given type;
pointers to objects of a given type;
structures containing a sequenceof objects of various types;
unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

unsigned char type does not appear in the first edition of this book,but is in
common use. signed char is new.

Besidesthe char types, up to three sizes of integer, declared short Lnt, int, and
long int, are available. Plain int objects have the natural size suggested by the host
machine architecture; the other sizes are provided to meet special needs. Longer
integers provide at least as much storage as shorter ones, but the implementation may
make plain integers equivalent to either. short integers, or long integers. The int types
all represent signedvalues unless specifiedotherwise.

Unsigned integers, declared using the keyword unsigned, obey the laws of arith­
metic modulo 2n where n is the number of bits in the representation, and thus arithmetic
on unsigned quantities can never overflow. The set of non-negative values that can be
stored in a signed object is a subset of the values that can be stored in the corresponding
unsignedobject, and the representation for the overlappingvalues is the same.

Any of single precision floating point (f loa t), double precision floating point
(double), and extra precision floating point (long double) may be synonymous,but
the ones later in the list are at least as precise as those before.

long double is new. The first edition made long float equivalent to
double;the locution has been withdrawn.

Enumerations are unique types that have integral values; associated with each
enumeration is a set of named constants (§A8.4). Enumerations behave like integers,
but it is common for a compiler to issue a warning when an object of a particular
enumeration type is assigned something other than one of its constants, or an expression
of its type.

Becauseobjects of these types can be interpreted as numbers, they will be referred to
as arithmetic types. Types char, and int of all sizes, each with or without sign, and
also enumeration types, will collectively be called integral types. The types float,
double, and long double will be calledfloating types.

The void type specifies an empty set of values. It is used as the type returned by
functions that generate no value.

APPENDIX A196 REFERENCE MANUAL



A6.3 Integer and Floating

When a value of floating type is converted to integral type, the fractional part is dis­
carded; if the resulting value cannot be represented in the integral type, the behavior is
undefined. In particular, the result of converting negative floating values to unsigned
integral types is not specified.

When a value of integral type is converted to floating, and .the value is in the
representable range but is not exactly representable, then the result may be either the
next higher or next lower representable value. If the result is out of range, the behavior
is undefined.

A6.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non­
negative value that is congruent to that integer, modulo one more than the largest value
that can be represented in the unsigned type. In a two's complement representation, this
is equivalent to left-truncation if the bit pattern of the unsigned type is narrower, and to
zero-filling unsigned values and sign-extending signed values if the unsigned type is
wider.

When any integer is converted to a signed type, the value is unchanged if it can be
represented in the new type and is implementation-defined otherwise.

A6.1 Integral Promotion

A character, a short integer, or an integer bit-field, all either signed or not, or an
object of enumeration type, may be used in an expression wherever an integer may be
used. If an int can represent all the values of the original type, then the value is con­
verted to int; otherwise the value is converted to unsigned into This process is
called integral promotion.

Some operators may, depending on their operands, cause conversion of the value of
an operand from one type to another. This section explains the result to be expected
from such conversions. §A6.5 summarizes the conversions demanded by most ordinary
operators; it will be supplemented as required by the discussion of each operator.

A6. Conve,slons

An object is a named region of storage; an lvalue is an expression referring to an
object. An obvious example of an lvalue expression is an identifier with suitable type
and storage class. There are operators that yield lvalues: for example, if E is an expres­
sion of pointer type, then *E is an lvalue expression referring to the object to which E
points. The name "lvalue" comes from the assignment expression E1 = E2 in which
the left operand E 1 must be an lvalue expression. The discussion of each operator speci­
fies whether it expects lvalue operands and whether it yields an lvalue.

AS. Objects and Lvalues

CONVERSIONS 197SECTION A6



A6.S Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such
a case the integral expression is converted as specified in the discussion of the addition
operator (§A7.7).

Two pointers to objects of the same type, in the same array, may be subtracted; the
result is converted to an integer as specified in the discussion of the subtraction operator
(§A7.7).

An integral constant expression with value 0; or such an expression cast to type
void *, may be converted, by a cast, by assignment, or by comparison, to a .pointer of
any type. This produces a null pointer that is equal to another null pointer of the same
type, but unequal to any pointer to a function or object.

Certain other conversions involving pointers are permitted, but have implementation­
dependent aspects. They must be specified by an explicit type-conversion operator, or

A6.5 Arithmetic Conversions

Many operators cause conversions and yield result types in a similar way. The effect
is to bring operands into a common type, which is also the type of the result. This pat­
tern is called the usual arithmetic conversions.

First, if either operand is long double, the other is converted to long double.
Otherwise, if either operand is double, the other is converted to double.
Otherwise, if either operand is float, the other is converted to float.
Otherwise, the integral promotions are performed on' both operands; then, if either
operand is unsigned long int, the other is converted to unsigned long into
Otherwise, if one operand is long int and the other is unsigned int, the effect
depends on whether a long int can represent all values of an unsigned int; if
so, the unsigned int operand is converted to long int; if not, both are converted
to unsigned long into
Otherwise, if one operand is long int, the other is converted to long into
Otherwise, ifeither operand is unsLqnedint, the other is converted to unsigned
into
Otherwise, both operands have type into

There are two changes here. First, arithmetic on float operands may be done
in single precision, rather than double; the first edition specified that all floating
arithmetic was double precision. Second, shorter unsigned types, when com­
bined with a larger signed type, do not propagate the unsigned property to the
result type; in the first edition, the unsigned always dominated. The new rules
are slightly more complicated, but reduce somewhat the surprises that may
occur when an unsigned quantity meets signed. Unexpected results may still
occur when an unsigned expression is compared to a signed expression of the
same size.

A6.4 Floating Types

When a less precise floating value is converted to an equally or more precise floating
type, the value is unchanged. When a more precise floating value is converted to a less
precise floating type, and the value is within representable range, the result may be
either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined.

APPENDIX A198 REFERENCE MANUAL



A6.8 Pointersto Void

Any pointer to an object may be converted to type void * without loss of informa­
tion. If the result is converted back to the original pointer type, the original pointer is
recovered. Unlike the pointer-to-pointer conversions discussed in §A6.6, which generally
require an explicit cast, pointers may be assigned to and from pointers of type void *,
and may be compared with them.

This interpretation of void * pointers is new; previously, char * pointers
played the role of generic pointer. The ANSI standard specifically blesses the
meeting of void * pointers with object pointers in assignments and relationals,
while requiring explicit casts for other pointer mixtures.

A6.7 Void

The «nonexistent) value of a void object may not be used in any way, and neither
explicit nor implicit conversion to any non-void type may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used only where the
value is not required, for example as an expression statement (§A9.2) or as the left
operand of a comma operator (§A7.18).

An expression may be converted to type void by a cast. For example, a void cast
documents the discarding of the value of a function call used as an expression statement.

void did not appear in the first edition of this book,but has become common
since.

cast (§§A7.5 and A8.8).
A pointer may be converted to an integral type large enough to hold it; the required

size is implementation-dependent. The mapping function is also implementation­
dependent.

An object of integral type may be explicitly converted to a pointer. The mapping
always carries a sufficiently wide integer converted from a pointer back to the same
pointer, but is otherwise implementation-dependent.

A pointer to one type may be converted to a pointer to another type. The resulting
pointer may cause addressing exceptions if the subject pointer does not refer to an object
suitably aligned in storage. It is guaranteed that a pointer to an object may be con­
verted to a pointer to an object whose type requires less or equally strict storage align­
ment and back again without change; the notion of "alignment" is implementation"
dependent, but objects of the char types have least strict alignment requirements. As
described in §A6.8, a pointer may also be converted to type void * and back again
without change.

A pointer may be converted to another pointer whose type is the same except for the
addition or removal of qualifiers (§§A4.4, A8.2) of the object type to which the pointer
refers. If qualifiers are added, the new pointer is equivalent to the old except for restric­
tions implied by the new qualifiers. If qualifiers are removed, operations on the underly­
ing object remain subject to the qualifiers in its actual declaration.

Finally, a pointer to a function may be converted to a pointer to another function
type. Calling the function specified by the converted pointer is implementation­
dependent; however, if the converted pointer is reconverted to its original type, the result
is identical to the original pointer.

CONVERSIONS 199SECTION A6



A7.2 Primary Expressions

Primary expressionsare identifiers, constants, strings, or expressionsin parentheses.
primary-expression:

identifier
constant
string
( expression

An identifier is a primary expression,provided it has been suitably declared as dis­
cussed below. Its type is specified by its declaration. An identifier is an lvalue if it
refers to an object (tAS) and if its type is arithmetic, structure, union, or pointer.

A constant is a primary expression. Its type depends on its form as discussed in
tA2.S.

A string literal is a primary expression. Its type is originally "array of char" (for
wide-character strings, "array of wchar_t"), but followingthe rule given in §A7.1, this

A7.1 Pointer Generation

If the type ofan expressionor subexpressionis "array of T," for some type T, then
the value of the expression is a pointer to the first object in the array, and the type of
the expression is altered to "pointer to T." This conversiondoes not take place if the
expression is the operand of the unary & operator, or of ++, --, sizeof, or as the left
operand of an assignment operator or the • operator. Similarly, an expressionof type
"function returning T," except when used as the operand of the & operator, is converted
to "pointer to function returning T."

A7. Expressions
The precedence of expressionoperators is the same as the order of the major subsec­

tions of this section, highest precedence first. Thus, for example, the expressions
referred to as the operands of + (§A7.7) are those expressionsdefined in §§A7.I-A7.6.
Within each subsection, the operators have the same precedence. Left- or right­
associativity is specified in each subsection for the operators discussed therein. The
grammar in §A13incorporates the precedence and associativityof the operators.

The precedence and associativity of operators is fully specified, but the order of
evaluation of expressionsis, with certain exceptions,undefined, even if the subexpressions
involve side effects. That is, unless the definition of an operator guarantees that its
operands are evaluated in a particular order, the implementation is free to evaluate
operands in any order, or even to interleave their evaluation. However, each operator
combines the values produced by its operands in a way compatible with the parsing of
the expressionin which it appears.

This rule revokes the previous freedom to reorder expressions with operators
that are mathematically commutative and associative. but can fail to be compu­
tationally associative. The change affects only floating-point computations near
the limits of their accuracy, and situations where overflow is possible.

The handling of overflow,divide check, and other exceptions in expressionevaluation
is not defined by the language. Most existing implementations of C ignore overflowin
evaluation of signed integral expressions and assignments, but this behavior is not
guaranteed. Treatment of divisionby 0, and all floating-point exceptions,varies among
implementations;sometimes it is adjustable by a non-standard library function.

APPENDIX A200 REFERENCE MANUAL



A7.3.2 Function Calls

A function call is a postfix expression, called the function designator, followed by
parentheses containing a possibly empty, comma-separated list of assignment expressions
(§A7.17), which constitute the arguments to the function. If the postfix expression con­
sists of an identifier for which no declaration exists in the current scope, the identifier is
implicitly declared as if the declaration

extern int identifier ( ) ;
had been given in the innermost block containing the function call. The postfix expres­
sion (after possible implicit declaration and pointer generation, §A7.1) must be of type
"pointer to function returning T," for some type T, and the value of the function call
has type T.

In the first edition, the type was restricted to "function," and an explicit *
operator was required to call through pointers to functions. The ANSI standard
blesses the practice of some existing compilers by permitting the same syntax
for calls to functions and to functions specified by pointers. The older syntax is
still usable.

The term argument is used for an expression passed by a function call; the term
parameter is used for an input object (or its identifier) received by a function definition,

A7.3.1 Array References

A postfix expression followed by an expression in square brackets is a postfix expres­
sion denoting a subscripted array reference. One of the two expressions must have type
"pointer to T', where T is some type, and the other must have integral type; the type of
the subscript expression is T. The expression E1 [E2] is identical (by definition) to
* ( (E 1)+ (E2 ) ). See §AS.6.2 for further discussion.

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

A7.3 Postfix Expressions

The operators in postfix expressions group left to right.
postfix -expression:

primary-expression
postfix-expression [ expression]
postfix-expression ( argument-expression-listq,
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

is usually modified to "pointer to char" (wchar_t) and the result is a pointer to the
first character in the string. The conversion also does not occur in certain initializers;
see §AS.7.

A parenthesized expression is a primary expression whose type and value are identi­
cal to those of the unadorned expression. The presence of parentheses does not affect
whether the expression is an lvalue.

EXPRESSIONS 201SECTION A7



A7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expres­
sion. The first operand expression must be a structure or a union, and the identifier
must name a member of the structure or union. The value is the named member of the
structure or union, and its type is the type of the member. The expression is an lvalue if
the first expression is an Ivalue, and if the type of the second expression is not an array
type.

or described in a function declaration. The terms "actual argument (parameter)" and
"formal argument (parameter)" respectively are sometimes used for the same distinc­
tion.

In preparing for the call to a function, a copy is made of each argument; all
argument-passing is strictly by value. A function may change the values of its parame­
ter objects, which are copies of the argument expressions, but these changes cannot
affect the values of the arguments. However, it is possible to pass a pointer on the
understanding that the function may change the value of the object to which the pointer
points.

There are two styles in which functions may be declared. In the new style, the types
of parameters are explicit and are part of the type of the function; such a declaration is
also called a function prototype. In the old style, parameter types are not specified.
Function declaration is discussed in §§A8.6.3 and AIO.I.

If the function declaration in scope for a call is old-style, then default argument pro­
motion is applied to each argument as follows: integral promotion (§A6.1) is performed
on each argument of integral type, and each float argument is converted to double.
The effect of the call is undefined if the number of arguments disagrees with the
number of parameters in the definition of the function, or if the type of an argument
after promotion disagrees with that of the corresponding parameter. Type agreement
depends on whether the function's definition is new-style or old-style. If it is old-style,
then the comparison is between the promoted type of the argument of the call, and the
promoted type of the parameter; if the definition is new-style, the promoted type of the
argument must be that of the parameter itself, without promotion.

If the function declaration in scope for a call is new-style, then the arguments are
converted, as if by assignment, to the types of the corresponding parameters of the
function's prototype. The number of arguments must be the same as the number of
explicitly described parameters, unless the declaration's parameter list ends with the
ellipsis notation (, •.. ). In that case, the number of arguments must equal or exceed
the number of parameters; trailing arguments beyond the explicitly typed parameters
suffer default argument promotion as described in the preceding paragraph. If the
definition of the function is old-style, then the type of each parameter in the prototype
visible at the call must agree with the corresponding parameter in the definition, after
the definition parameter's type has undergone argument promotion.

These rules are especially complicated because they must cater to a mixture of
old- and new-style functions; Mixtures are to be avoided if possible.

The order of evaluation of arguments is unspecified; take note that various compilers
differ. However, the arguments and the function designator are completely evaluated,
including all side effects, before the function is entered. Recursive calls to any function
are permitted.

APPENDIX A202 REFERENCE MANUAL



A7.4.2 Address Operator

The unary & operator takes the address of its operand. The operand must be an
lvalue referring neither to a bit-field nor to an object declared as register, or must be
of function type. The result is a pointer to the object or function referred to by the
Ivalue. If the type of the operand is T, the type of the result is "pointer to T."

A7.4. 1 Prefix Incrementation Operators

A unary expression preceded by a ++ or -- operator is a unary expression. The
operand is incremented (+ +) or decremented (- -) by 1. The value of the expression.is
the value after. the incrementation (decrementation). The operand must be an lvalue;
see the discussion of additive operators (§A7.7) and assignment (§A7.17) for further
constraints on the operand and details of the operation. The result is not an lvalue.

unary-operator: one of
& * +

A7.4 Unary Operators

Expressions with unary operators group right-to-left,
unary-expression:

postfix -expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sheof (type-name )

A7.3.4 Postfix Incrementation

A postfix expression followed by a ++ or - - operator is a postfix expression. The
value of the expression is the value of the operand. After the value is noted, the operand
is incremented (++) or decremented (...-) by 1. The operand must be an lvalue; see the
discussion of additive operators (§A7.7) and assignment (§A7.17) for further constraints
on the operand and details of the operation. The result is not an lvalue.

A postfix expression followed by an arrow (built from - and » followed by an iden­
tifier is a postfix expression. The first operand expression must be a pointer to a struc­
ture or a union, and the identifier must name a member of the structure or union. The
result refers to the named member of the structure or union to which the pointer expres­
sion points, and the type is the type of the member; the result is an lvalue if the type is
not an array type.

Thus the expression E1->MOS is the same as (*E1) •MOS. Structures and unions
are discussed in §A8.3.

In the first edition of this book, it was already the rule that a member name in
such an expression had to belong to the structure or union mentioned in the
postfix expression; however, a note admitted that this rule was not firmly
enforced. Recent compilers, and ANSI, do enforce it.

EXPRESSIONS 203SECTION A7



A7.4.8 Sizeof Operator

The sizeof operator yields the number of bytes required to store an object of the
type of its operand. The operand is either an expression,.which is not evaluated, or a
parenthesized type name. When sizeof is applied to a char, the result is 1; when
applied to an array, the result is the total number of bytes in the array. When applied
to a structure or union, the result is the number of bytes in the object, including any
padding required to make the object tile an array: the size of an array of n elements is n
times the size of one element. The operator may not be applied to an operand of func­
tion type, or of incomplete type, or to a bit-field. The result is an unsigned integral con­
stant; the particular type is implementation-defined. The standard header <stddef. h>
(see Appendix B) defines this type as size_ t.

A7.4.7 Logical Negation Operator

The operand of the I operator must have arithmetic type or be a pointer, and the
result is 1 if the value of its operand compares equal to 0, and 0 otherwise. The type of
the result is into

A7.4.8 One's Complement Operator

The operand of the - operator must have integral type, and the result is the one's
complement of its operand. The integral promotionsare performed. If the operand is
unsigned, the result is computed by subtracting the value from the largest value of the
promoted type. If the operand is signed, the result is computed by converting the pro­
moted operand to the corresponding unsigned type, applying -, and converting back to
the signed type. The type of the result is the type of the promoted operand.

A7.4.6 Unary Minus Operator

The operand of the unary _ operator must have arithmetic type, and the result is the
negative of its operand. An integral operand undergoes integral promotion. The nega­
tive of an unsigned quantity is computed by subtracting the promoted value from the
largest value of the promoted type and adding one; but negative zero is zero. The type
of the result is the type of the promoted operand.

A7.4.4 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result is the
value of the operand. An integral operand undergoes integral promotion. The type of
the result is the type of the promoted operand.

The unary + is new with the ANSI standard. It was added for symmetry with
unary -.

A7.4.3 Indirection Operator

The unary * operator denotes indirection, and returns the object or function to which
its operand points. It is an lvalue if the operand is a pointer to an object of arithmetic,
structure, union, or pointer type. If the type of the expressionis "pointer to T," the type
of the result is T.

APPENDIX A204 REFERENCEMANUAL



A7.7 Additive Operators

The additive operators + and - group left-to-right. If the operands have arithmetic
type, the usual arithmetic conversionsare performed. There are some additional type
possibilitiesfor each operator.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object in an
array and a value of any integral type may be added. The latter is converted to an
address offset by multiplying it by the size of the object to which the pointer points.
The sum is a pointer of the same type as the original pointer, and points to another
object in the same array, appropriately offset from the original object. Thus if P is a
pointer to an object in an array, the expressionP+ 1 is a pointer to the next object in the
array. If the sum pointer points outside the boundsof the array, except at the first loca­
tion beyond the high end, the result is undefined.

The provision for pointers just beyond the end of an array is new. It legitimizes
a common idiom for looping over the elements of an array.

The result of the - operator is the difference of the operands. A value of any

A7.6 MuHiplicativeOperators

The multiplicativeoperators *, I, and" group left-to-right.
multiplicative-expression:

cast-expression
multiplicative-expression * cast-expression
multiplicative-expression I cast-expression
multiplicative-expression" cast-expression

The operands of * and I must have arithmetic type; the operands of " must have
integral type. The usual arithmetic conversions are performed on the operands, and
predict the type of the result.

The binary * operator denotes multiplication.
The binary I operator yields the quotient, and the" operator the remainder, of the

divisionof the first operand by the second; if the secondoperand is 0, the result is unde­
fined. Otherwise, it is always true that (alb) *b + a"b is equal to a. If both
operands are non-negative,then the remainder is non-negativeand smaller than the divi­
sor; if not, it is guaranteed only that the absolute value of the remainder is smaller than
the absolute value of the divisor.

A unary expressionpreceded by the parenthesized name of a type causes conversion
of the value of the expressionto the named type.

cast-expression:
unary-expression
( type-name) cast-expression

This construction is called a cast. Type names are described in §A8.8. The effects of
conversionsare described in §A6. An expressionwith a cast is not an lvalue.

A7.5 Casts

EXPRESSIONS 205SECTION A7



A7.9 Relational Operators

The relational operators group left-to-right, but this fact is not useful; a-eb-ec is
parsed as (a<b) <c, and a-eb evaluates to either 0 or 1.

relational-expression:
shift -expression
relational-expression < shift -expression
relational-expression > shift-expression
relational-expression <= shift -expression
relational-expression >= shift -exprrssion

The operators < (less), > (greater), <= (less or equal) and >= (greater or equal) all
yield 0 if the specified relation is false and 1 if it is true. The type of the result is into
The usual arithmetic conversions are performed on arithmetic operands. . Pointers to
objects of the same type (ignoring any qualifiers) may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer com­
parison is defined only for parts of the same object: if two pointers point to the same
simple object,· they compare equal; if the pointers are to members of the same structure,
pointers to objects declared later in the structure compare higher; if the pointers are to
members of the same union, they compare equal; if the pointers refer to members of an
array, the comparison is equivalent to comparison of the corresponding subscripts. If P
points to the last member of an array, then .P+1 compares higher than P, even though
P+ 1 points outside the array. Otherwise, pointer comparison is undefined.

These rules slightly liberalize the restrictions stated in the first edition, by per­
mitting comparison of pointers to different members of a structure or union.
They also legalize comparison with a pointer just off the end of an array.

A7.8 Shift Operators

The shift operators « and» group left-to-right. For both operators, each operand
must be integral, and is subject to the integral promotions. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or
greater than or equal to the number of bits in the left expression's type.

shift -expression:
additive-expression
shift -expression < < additive-expression
shift -expression > > additive-expression

The value of E1«E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; in the
absence of overflow, this is equivalent to multiplication by 2E2. The value of E1»E2 is
E1 right-shifted E2 bit positions. The right shift is equivalent to division by 2£2 if E 1 is
unsigned or if it has a non-negative value; otherwise the result is implementation-defined.

integral type may be subtracted from a pointer, and then the same conversions and con­
ditions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is a signed
integral value representing the displacement between the pointed-to objects; pointers to
successive objects differ by 1. The' type of the result depends on the implementation, but
is defined as ptrdiff_ t in the standard header <stddef. h>. The value is undefined
unless the pointers point. to objects within the same array; however if P points to the last
member of an array,then (P+ 1) -P has value 1.

APPENDIX A206 REFERENCE MANUAL



A7.14 Logical AND Operator

logical- AND-expression:
inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

The && operator groups left-to-right. It returns 1 if both its operands compare unequal
to zero, ° otherwise. Unlike &, && guarantees left-to-right evaluation: the first operand
is evaluated, including all side effects; if it is equal to 0, the value of the expression is 0.
Otherwise, the right operand is evaluated, and if it is equal to 0, the expression's value is
0, otherwise 1.

The operands need not have the same type, but each must have arithmetic type or be
a pointer. The result is into

inclusive-OR -expression:
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

A7.13 Bitwise Inclusive OR Operator

exclusive-OR-expression:
AND-expression
exclusive-OR -expression " AND-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

A7.12 Bitwise Exclusive OR Operator

AND-expression:
equality-expression
AND-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function
of the operands. The operator applies only to integral operands.

A7.11 Bitwise AND Operator

equality-expression:
relational-expression
equality-expression = = relational-expression
equality-expression I= relational-expression

The == (equal to) and the I= (not equal to) operators are analogous to the relational
operators except for their lower precedence. (Thus a<b == c-ed is 1 whenever a-eb
and c-ed have the same truth-value.)

The equality operators follow the same rules as the relational operators, but permit
additional possibilities: a pointer may be compared to a constant integral expression with
value 0, or to a pointer to void. See §A6.6.

A7.10 Equality Operators

EXPRESSIONS 207SECTION A7



All require an Ivalue as left operand, and the lvalue must be modifiable: it must not be
an array, and must not have an incomplete type, or be a function. Also, its type must
not be qualified with const; if it is a structure or union, it must not have any member
or, recursively, submember qualified with const. The type of an assignment expression
is that of its left operand, and the value is the value stored in the left operand after the
assignment has taken place.

In the simple assignment with =, the value of the expression replaces that of the
object referred to by the lvalue. One of the following must be true: both operands have
arithmetic type, in which case the right operand is converted to the type of the left by
the assignment; or both operands are structures or unions of the same type; or one

= 1=
assignment-operator: one of

= *= /= %= += -= «= »= &=

There are several assignment operators; all group right-to-Ieft.
assignm ent- expression:

conditional- expression
unary- expression assignment- operator assignment- expression

A7~17 Assigl'l1'l9t't Expressions

conditional- expression:
logical- OR-expression
logical-OR-expression ? expression: conditional-expression

The first expression is evaluated, including all side effects; if it compares unequal to 0,
the result is the value of the second expression, otherwise that of third expression. Only
one of the second and third operands is evaluated. If the second and third operands are
arithmetic, the usual arithmetic conversions are performed to bring them to a common
type, and that is the type of the result. If both are void, or structures or unions of the
same type, or pointers to objects of the same type, the result has the common type. If
one is a pointer and the other the constant 0, the ° is converted to the pointer type, and
the result has that type. If one is a pointer to void and the other is another pointer, the
other pointer is converted to a pointer to void, and that is the type of the result.

In the type comparison for pointers, any type qualifiers (§A8.2) in the type to which
the pointer points are insignificant, but the result type inherits qualifiers from both arms
of the conditional.

A7.16 Q)nditional Operator

logical- OR-expression:
logical-AND-expression
logical- OR-expression : : logical-AN D-expression

The l l operator groups left-to-right. It returns 1 if either of its operands compares
unequal to zero, and ° otherwise. Unlike I, I I guarantees left-to-right evaluation: the
first operand is evaluated, including all side effects; if it is unequal to 0, the value of the
expression is 1. Otherwise, the right operand is evaluated, and if it is unequal to 0, the
expression's value is 1, otherwise 0.

The operands need not have the same type, but each must have arithmetic type or be
a pointer. The result is into

A7.15 Logical OROperator

APPENDIX A208 REFERENCE MANUAL



constant- expression:
conditional-expression

Expressions that evaluate to a constant are required in several contexts: after case, as
array bounds and bit-field lengths, as the value of an enumeration constant, in initializ­
ers, and in certain preprocessor expressions.

Constant expressions may not contain assignments, increment or decrement opera­
tors, function calls, or comma operators, except in an operand of sizeof. If the con­
stant expression is required to be integral, its operands must consist of integer, enumera­
tion, character, and floating constants; casts must specify an integral type, and any float­
ing constants must be cast to an integer. This necessarily rules out arrays, indirection,
address-of, and structure member operations. (However, any operand is permitted for
sizeof.)

More latitude is permitted for the constant expressions of initializers; the operands
may be any type of constant, and the unary &. operator may be applied to external or
static objects, and to external or static arrays subscripted with a constant expression.
The unary &. operator can also be applied implicitly by appearance of unsubscripted
arrays and functions. Initializers must evaluate either to a constant or to the address of
a previously declared external or static object plus or minus a constant.

Less latitude is allowed for the integral constant expressions after #if; sizeof
expressions, enumeration constants, and casts are not permitted. See §A12.5.

Syntactically, a constant expression is an expression restricted to a subset of opera­
tors:

A7.19 C4nstart Expressions

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right, and the value of
the left expression is discarded. The type and value of the result are the type and value
of the right operand. All side effects from the evaluation of the left operand are com­
pleted before beginning evaluation of the right operand. In contexts where comma is
given a special meaning, for example in lists of function arguments (§A7.3.2) and lists of
initializers (§A8.7), the required syntactic unit is an assignment expression, so the
comma operator appears only in a parenthetical grouping; for example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

A7.18 Q)nma Operator

operand is a pointer and the other is a pointer to void; or the left operand is a pointer
and the right operand is a constant expression with value 0; or both operands are
pointers to functions or objects whose types are the same except for the possible absence
of const or volatile in the right operand.

An expression of the form E1 op = E2 is equivalent to E1 = E1 op (E2) except
that E 1 is evaluated only once.

EXPRESSIONS 209SECTION A7



A8.1 Storage Class Specifiers

The storage class specifiersare:
storage-class-specifier:

auto
register
static
extern
typedef

The meanings of the storage classes were discussedin §A4.
The auto and register specifiers give the declared objects automatic storage

class, and may be used only within functions. Such declarations also serve as definitions
and cause storage to be reserved. A register declaration is equivalent to an auto
declaration, but hints that the declared objects will be accessed frequently. Only a few
objects are actually placed into registers, and only certain types are eligible; the restric­
tions are implementation-dependent. However, if an object is declared register, the
unary & operator may not be applied to it, explicitlyor implicitly.

The rule that it is illegal to calculate the address of an object declared
register. but actually taken to be auto. is new.

The static specifier gives the declared objects static storage class. and may be
used either inside or outside functions. Inside a function, this specifier causes storage to
be allocated, and serves as a definition; for its effect outside a function, see §A11.2.

A declaration with extern, used inside a function, specifies that the storage for the
declared objects is defined elsewhere;for its effects outside a function, see §Al1.2.

init -declarator:
declarator
declarator = initializer

Declarators will be discussed later (§A8.S); they contain the names being declared. A
declaration must have at least one declarator, or its type specifier must declare a struc­
ture tag, a union tag, or the members of an enumeration; empty declarations are not per­
mitted.

Declarations specify the interpretation given to each identifier; they do not neces­
sarily reserve storage associated with the identifier. Declarations that reserve storage are
called definitions. Declarations have the form

declaration:
declaration-specifiers init-declarator-list.g;

The declarators in the init-declarator-list contain the identifiers being declared; the
declaration-specifiersconsist of a sequenceof type and storage class specifiers.

declaration-specifiers:
storage-class-specifier declaration-specifiers.q,
type-specifier declaration-specifiers q,

type-qualifier declaration-specifiers s;

init -declarator-list:
init -declarator
init-declarator-list , init-declarator

AS. Declarations

APPENDIX A210 REFERENCE MANUAL



type-qualifier:
const
volatile

Type qualifiers may appear with any type specifier. A const object may be initialized,
but not thereafter assigned to. There are no implementation-independentsemantics for
volatile objects.

The const and volatile properties are new with the ANSI standard. The
purpose of cons e is to announce objects that may be placed in read-only
memory, and perhaps to increase opportunities for optimization. The purpose
of volatile is to force an implementation to suppress optimization that could
otherwise occur. For. example, for a machine with memory-mapped
input/output, a pointer to a device register might be declared as a pointer to
volatile, in order to prevent the compiler from removing apparently redun­
dant references through the pointer. Except that it should diagnose explicit
attempts to change const objects, a compiler may ignore these qualifiers.

AB.2 Type Specifiers

The type-specifiersare
type-specifier:

void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum -specifier
typedef-name

At most one of the words long or short may be specified together with int; the
meaning is the same if int is not mentioned. The word long may be specifiedtogether
with double. At most one of signed or unsigned may be specified together with
int or any of its shortor long varieties, or with char. Either may appear alone, in
which case int is understood. The signed specifier is useful for forcing char objects
to carry a sign; it is permissiblebut redundant with other integral types.

Otherwise, at most one type-specifier may be given in a declaration. If the type­
specifier is missing from a declaration, it is taken to be into

Types may also be qualified, to indicate special properties of the objects being
declared.

The typedef specifier does not reserve storage and is called a storage class specifier
only for syntactic convenience;it is discussedin §A8.9.

At most one storage class specifier may be given in a declaration. If none is given,
these rules are used: objects declared inside a function are taken to be auto; functions
declared within a function are taken to be extern; objects and functions declared out­
side a 'function are taken to be static, with external linkage. See§§AIO-All.

DECLARATIONS 111SECTION A8



specifier-qualifier-list:
type-specifier specifier-qualifier-listg;
type-qualifier specifier-qualifter-listg;

struct -declarator-list:
struct -declarator
struct -declarator-list , struct -declarator

Usually, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specifiednumber of bits. Such a member is also
called a bit-field, or merely field; its length is set off from the declarator for the field
name by a colon.

struct -declarator:
declarator
declaratoropt : constant-expression

A type specifier of the form
struct-or-union identifier { struct-declaration-list }

declares the identifier to be the tag of the structure or union specified by the list. A
subsequent declaration in .the .same or an inner scope may refer to the same type by
using the tag in a specifier without the list:

struct -or-union identifier
If a specifier with a tag but without a list appears when. the tag is not declared, an
incomplete type is specified. Objects with an incomplete structure or union typemay be
mentioned in contexts where their size is not needed, for example in declarations (not
definitions), for specifyinga pointer, or for creating a typede£, but not otherwise. The
type becomes complete on occurrence of a subsequent specifier with that tag, and con­
taining a declaration list. Evenin specifierswith a list, the structure or union type being
declared is incomplete within the list, and becomes complete only at the } terminating
the specifier.

A structure may not contain a member of incomplete type. Therefore, it is impossi­
ble to declare a structure or union containing an instance of itself. However, besides

struct -declaration:
specifier-qualifier-list struct -declarator-list

struct -declaration -list:
struct -declaration
struct -declaration -list struct -declaration

AS.3 Structure and Union Declarations

A structure is an object consistingof a sequenceof named members of various types.
A union is an object that contains, at different times, anyone of several members of
various types. Structure and union specifiershave the same form.

struct -or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct -or-union identifier

struct-or-union:
struct
union

A struct-declaration-list is a sequenceof declarations for the members of the structure or
union:

APPENDIX A212 REFERENCE MANUAL



that declare a structure or union, but have no declaration list and no declarators. Even
if the identifier is a structure or union tag already declared in an outer scope (§All.1),
this declaration makes the identifier the tag of anew, incompletely-typed structure or
union in the current scope.

This recondite rule is new with ANSI. It is intended to deal with mutually­
recursive structures declared in an inner scope, but whose tags might already be
declared in the outer scope.

A structure or union specifier with a list but no tag creates a unique type; it can be
referred to directly only in the declaration of which it is a part.

The names of members and tags do not conflict with each other or' with ordinary
variables. A member name may not appear twice in the same structure or union, but
the same member name. may be used in different structures or unions.

In the first edition of this book, the names of structure and union members were
not associated with their parent. However, this association became common in
compilers well before the ANSI standard.

A non-field member of a structure or union may have any object type. A field
member (which need not have a declarator and thus may be unnamed) has type int,
unsigned int, or signed int, and is interpreted as an object of integral type of the
specified length in bits; whether an int field is treated as signed is implementation­
dependent. Adjacent field members of structures are packed into implementation­
dependent storage units in an implementation-dependent direction. When a field follow­
ing another field will not fit into a partially-filled storage unit, it may be split between
units, or the unit may be padded. An unnamed field with width 0 forces this padding, so
that the next field will begin at the edge of the next allocation unit.

The ANSI. standard makes fields even more implementation-dependent than did
the fi.r~t.~ditioJl. It is advisable to read the language rules for storing bit-fields
as "i~pleRl~nt~tioo-dependent" without qIJalificati9n. Structures with bit-fields
may be used as a portable way of attempting to reduce the storage required for
a structure (with the probable cost of increasing the instruction space, and time,
needed to access the fields), or as a non-portable way to describe a storage lay­
out known at the bit level. In the second case, it is necessary to understand the
rules of the local implementation.

The members of a structure have addresses increasing in the order of their declara­
tions. A non-field member of a structure is aligned at an addressing boundary depend­
ing on its type; therefore, there may be unnamed holes in a structure. If a pointer to a
structure is cast to the type of a pointer to its first member, the result refers to the first
member.

A union may be thought of as a structure all of whose members begin at offset 0 and
whose size is sufficient to contain any of its members. At most one of the members can
be stored in a union at any time. If a pointer to a union is cast to the type of a pointer
to a member, the result refers to that member.

A simple example of a structure declaration is

struct-or-union identifier ;

givmg a name to the structure or union type, tags allow definition of self-referential
structures; a structure or union may contain a pointer to an instance of itself, because
pointers to incomplete types may be declared.

A very special rule applies to declarations of the form

DECLARATIONS 213SECTION A8



AS.4 Enumeration.

Enumerations are unique types with values ranging over a set of named constants
called enumerators. The form of an enumeration specifier borrows from that of struc­
tures and unions.

if (u.~.type == FLOAT)
...sin(u.nf.floatnode)

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

} u;
} nf;

};
which contains an array of 20 characters, an iriteger, and two pointers to similar struc­
tures, Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the
given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.r!ght->tword[O]

refers to the first character of the. tword member of the right subtree of s.
In general, a member of a union may riot be inspected unless the value of the union

has been assigned using that same member. However, one special guarantee simplifies
the use of unions: if a union contains several structures that share a common initial
sequence, and if the union currently contains one of these structures, it is permitted to
refer to the common initial part of any of the contained structures. For example, the
following is a legal fragment:

union {
struct {

int type;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
float floatnode;

struct tnode {
char tword [20];
int count;
struct tnode *left;
struct tnode *right;

APPENDIX A214 REFERENCE MANUAL



Declarators have the syntax:
declarator:

pointer optdirect -declarator

direct -declarator:
identifier
( declarator )
direct-declarator [ constant-expressionopt ]
direct -declarator ( parameter-type-list )
direct-declarator ( identifier-listopt )

pointer:
* type-qualifier-listopt
* type-qualtfter-listi., pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The structure of declarators resembles that of. indirection, function, and array expres­
sions; the grouping is the same.

A8.5 Declarator8

enumerator:
identifier
identifier = constant-expression

The identifiers in an enumerator list are declared as constants of type int, and may
appear wherever constants are required. If no enumerators with = appear, then the
values of the correspondingconstants begin at 0 and increase by 1 as the declaration is
read from left to right. An enumerator with = gives the associated identifier the value
specified;subsequent identifiers continue the progressionfrom the assignedvalue.

Enumerator names in the same scope must all be distinct from each other and from
ordinary variable names, but the values need not be distinct.

The role of the identifier in the enum-specifier is analogous to that of the structure
tag in a struct-specifier; it names a particular enumeration. The rules for enum­
specifiers with and without tags and lists are the same as those for structure or union
specifiers, except that incomplete enumeration types do not exist; the tag of an enum­
specifier without an enumerator list must refer to an in-scopespecifierwith a list.

Enumerations are new since the first edition of this book, but have been part of
the language for some years.

enumerator-list:
enumerator
enumerator-list , enumerator

enum -specifler:
enum identifieropt { enumerator-list}
enum identifier

DECLARATIONS 215SECTION A8



A8.8.2 Array Deelaratora

In a declaration T 0 where 0 has the form
01 [constant-expressionopt]

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of
the identifier of 0 is "type-modifier array of T." If the constant-expression is present, it
must have integral type, and value greater than o. If the constant expression specifying

A8.8.1 Pointer Deelaratora

In a declaration T Dwhere 0 has the form
* type-qualifier-Iistopt 0 1

and the type of the identifier in the declaration T 01 is "type-modifier T," the type of
the identifier of 0 is "type-modifier type-qualifier-list pointer to T." Qualifiers follow­
ing * apply to pointer itself, rather than to the object to which the pointer points.

For example, consider the declaration
int *ap[];

Here ap[] plays the role of 01; a declaration "int ap[]" (below) would give ap the
type "array of int," the type-qualifier list is empty, and the type-modifier is "array of."
Hence the actual declaration gives ap the type "array of pointers to int."

As other examples, the declarations
int i, *pi, *eonst epi = &ij
eonst int ei = 3, *pei;

declare an integer i and a pointer to an integer pi. The value of the constant pointer
epi may not be changed; it will always point to the same location, although the value to
which it refers may be altered. The integer ei is constant, and may not be changed
(though it may be initialized, as here.) The type of pei is "pointer to eonst int,"
and pei itself may be changed to point to another place, but the value to which it points
may not be altered by assigning through pcd,

In a declaration T Dwhere 0 has the form
( 01 )

then the type of the identifier in 01 is the same as that of n The parentheses do not
alter the type, but may change the binding of complex declarators.

T.

A8.8 Meaning of Deelaratora

A list of declarators appears after a sequence of type and storage class specifiers.
Each declarator declares a unique main identifier, the one that appears as the first alter­
native of the production for direct-declarator. The storage class specifiers apply directly
to this identifier, but its type depends on the form of its declarator. A declarator is read
as an assertion that when its identifier appears in an expression of the same form as the
declarator, it yields an object of the specified type.

Considering only the type parts of the declaration specifiers (§A8.2) and a particular
declarator, a declaration has the form "T D,"where T is a type and 0 is a declarator.
The type attributed to the identifier in the various forms of declarator is described
inductively using this notation.

In a declaration T 0 where 0 is an unadorned identifier, the type of the identifier is

APPENDIX A216 REFERENCE MANUAL



parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract -declarator opt

In the new-styledeclaration, the parameter list specifiesthe types of the parameters. As

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

A8.6.3 Function Declarators

In a new-style function declaration T Dwhere Dhas the form
D 1 tparameter-type-ltst )

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of
the identifier of D is "type-modifier function with arguments parameter-type-list
returning T."

The syntax of the parameters is
parameter-type-list:

parameter-list
parameter-list ,

the bound is missing, the array has an incomplete type.
An array may be constructed from an arithmetic type, from a pointer, from a struc­

ture or union, or from another array (to generate a multi-dimensionalarray). Any type
from which an array is constructed must be complete; it must not be an array or struc­
ture of incomplete type. This implies that for a multi-dimensional array, only the first
dimensionmay be missing. The type of an object of incomplete array type is completed
by another, complete, declaration for the object (§AlO.2), or by initializing it (§A8.7).
For example,

float fa[17], *afp[17];
declares an array of float numbers and an array of pointers to float numbers. Also,

static int x3d[3][S][7];
declares a static three-dimensional array of integers, with rank 3x5x7. In complete
detail, x3d is an array of three items; each item is an array of five arrays; each of the
latter arrays is an array of seven integers. Any of the expressions x3d, x3d [ i ],
x3d[ i] [j], x3d[ i] [j] [k] may reasonably appear in an expression. The first three
have type "array," the last has type into More specifically,x3d [ i ][ j] is an array of
7 integers, and x3d [ i] is an array of 5 arrays of 7 integers.

The array subscripting operation is defined so that E1[E2 ] is identical to
* (E 1+E2). Therefore, despite its asymmetric appearance, subscripting is a commuta­
tive operation. Because of the conversionrules that apply to + and to arrays (§§A6.6,
A7.1, A7.7), if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1.

In the example, x3d [ i ] [ j ] [k] is equivalent to * (x3d [ i ] [ j] + k). The first
subexpressionx3d [ i ] [ j] is converted by §A7.1 to type "pointer to array of integers;"
by §A7.7, the addition involvesmultiplication by the size of an integer. It followsfrom
the rules that arrays are stored by rows (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an
array, but plays no other part in subscript calculations.

DECLARATIONS 217SECTION A8



When an object is declared, its init-declarator may specify an initial value for the
identifier being declared. The initializer is preceded by =, and iseither an expression,or
a list of initializers nested in braces. A list may end with a comma, a nicety for neat

AS.7 Initialization

a special case, the declarator for a new-style function with no parameters has a parame­
ter type list consisting solely of the keywordvoid. If the parameter type list ends with
an ellipsis ", ••• ", then the function may accept more arguments than the number of
parameters explicitlydescribed; see §A7.3.2.

The types of parameters that are arrays or functions are altered to pointers, in
accordance with the rules for parameter conversions;see §A10.1. The only storage class
specifier permitted in a parameter's declaration specifier is register,and this specifier
is ignored unless the function declarator heads a function definition. Similarly, if the
declarators in the parameter declarations contain identifiers and the function declarator
does not head a function definition, the identifiers go out of scope immediately.
Abstract declarators, which do not mention the identifiers, are discussed in §AS.S.

In an old-style function declaration T 0 where 0 has the form
01 (identifier-listopt)

and the type of the identifier in the declaration T 01 is "type-modifier T," the type of
the identifier of 0 is "type-modifier function of unspecified arguments returning T."
The parameters (if present) have the form

identifier-list:
identifier
identifier-list , identifier

In the old-style declarator, the identifier list must be absent unless the declarator is used
in the head of a function definition (§AIO.l). No information about the types of the
parameters is supplied by the declaration.

For example, the declaration
int f(), *fpi()i (*pfi)();

declares a function f returning an integer, a function fpi returning a pointer to an
integer, and a pointer pfi to a function returning an integer. In none of these are the
parameter types specified; they are old-style.

In the new-styledeclaration
int strcpy(char *dest, const char *source), rand(void);

strcpy is a function returning int,with two arguments, the first a character pointer,
and the second a pointer to constant characters. The parameter names are effectively
comments. The second function rand takes no arguments and returns into

Function declarators with parameter prototypes are, by far, the most important
language change introduced by the ANSI standard. They offer an advantage
over the "old-style" declarators of the first edition by providing error-detection
and coercion of arguments across function calls, but at a cost: turmoil and con­
fusion during their introduction, and the necessity of accommodating both
forms. Some syntactic ugliness was required for the sake of compatibility,
namely void as an explicit marker of new-style functions without parameters.
The ellipsis notation .. , ••. " for variadic functions is also new, and, together

with the macros in the standard header <stdarg. h>, formalizes a mechanism
that was officially forbidden but unofficially condoned in the first edition.
These notations were adapted from the C++ language.

APPENDIX A218 REFERENCE MANUAL



initializer:
assignment -expression
{ initializer-Iist }
{ initializer-list, }

inuialtzer-list:
initializer
initializer-Iist , initializer

All the expressions in the initializer for a static object or array must be constant
expressions as described in §A7.19. The expressions in the initializer for an auto or
register object or array must likewise be constant expressions if the initializer is a
brace-enclosed list. However, if the initializer for an automatic object is a single expres­
sion, it need not be a constant expression, but must merely have appropriate type for
assignment to the object.

The first edition did not countenance initialization of automatic structures,
unions, or arrays. The ANSI standard allows it, but only by constant construc­
tions unless the initializer can be expressed by a simple expression.

A static object not explicitly initialized is initialized as if it (or its members) were
assigned the constant O. The initial value of an automatic object not explicitlyinitialized
is undefined.

The initializer for a pointer or an object of arithmetic type is a single expression,
perhaps in braces. The expressionis assigned to the object.

The initializer for a structure is either an expressionof the same type, or a brace­
enclosed list of initializers for its members in order. Unnamed bit-field members are
ignored, and are not initialized. If there are fewer initializers in the list than members
of the structure, the trailing members are initialized with o. There may not be more ini­
tializers than members.

The initializer for an array is a brace-enclosedlist of initializers for its members. If
the array has unknown size, the number of initializers determines the size of the array,
and its type becomes complete. If the array has fixed size, the number of initializers
may not exceed the number of members of the array; if there are fewer, the trailing
members are initializedwith O.

As a special case, a character array may be initialized by a string literal; successive
characters of the string initialize successivemembers of the array. Similarly, a wide
character literal (§A2.6) may initialize an array of type wchar_t. If the array has
unknown size, the number of characters in the string, including the terminating null
character, determines its size; if its size is fixed, the number of characters in the string,
not counting the terminating null character, must not exceed the size of the array.

The initializer for a union is either a single expressionof the same type, or a brace-
enclosed initializer for the first member of the union.

The first edition did not allow initialization of unions. The "first-member" rule
is clumsy, but is hard to generalize without new syntax. Besides allowing
unions to be explicitly initialized in at least a primitive way, this ANSI rule
makes definite the semantics of static unions not explicitly initialized.

An aggregate is a structure or array. If an aggregate contains members of aggregate
type, the initialization rules apply recursively. Braces may be elided in the initialization
as follows:if the initializer for an aggregate's member that is itself an aggregate begins
with a left brace, then the succeeding comma-separated list of initializers initializes the

formatting.

DECLARATIONS 219SECTION AS



A8.8 Type Name.

In several contexts (to specify type conversions explicitly with a cast, to declare
parameter types in function declarators, and as an argument of sizeof) it is necessary
to supply the name of a data type. This is accomplished using a type name, which is
syntactically a declaration for an object of that type omitting the name of the object.

type-name:
specifier-qualifier-list abstract -declarator opt

abstract -declarator:
pointer
pointer opt direct -abstract -declarator

};
initializes the first column of y (regarded as a two-dimensional array) and leaves the
rest O.

Finally,
char msg[] = "Syntax error on line "s\n";

shows a character array whose members are initialized with a string; its size includes the
terminating null character,

};
The initializer for y begins with a left brace, but that for y [0] does not; therefore three
elements from the list are used. Likewise the next three are taken successively for y [ 1 ]
and then for y [ 2 ] . Also,

float y[4][3]= {
{ 1 }, { 2 }, { 3 }, { 4 }

};

is a completely-bracketed initialization: I, 3, and 5 initialize the first row of the array
y[0], namely y[0] [0], y[0] [ 1], and y[0] [2]. Likewise the next two lines initial­
ize y[1]and y[2 J. The Initializer ends early, and therefore the elements of y[3]are
initialized with O. Precisely the same effect could have been achieved by

float y[4][3]= {
1, 3, 5, 2, 4, 6, 3, 5, 7

members of the subaggregate; it is erroneous for there to be more initializers than
members. If, however, the initializer for a subaggregate does not begin with a left brace,
then only enough elements from the list are taken to account for the members of the
subaggregate; any remaining members are left to initialize the next member of the
aggregate of which the subaggregate is a part.

For example,
int x[] = { 1, 3, 5 };

declares and initializes x as a l-dimensional array with three members, since no size was
specified and there are three initializers.

float y[4][3]= {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

APPENDIX A220 REFERENCE MANUAL



A8.10 Type Equivalence

Two type specifier lists are equivalent if they contain the same set of type specifiers,
taking into account that some specifiers can be implied by others (for example, long

does.

A8.9 Typedef

Declarations whose storage class specifier is typede£ do not declare objects; instead
they define identifiers that name types. These identifiers are called typedef names.

typedef-name:
identifier

A typedef declaration attributes a type to each name among its declarators in the
usual way (see .8.6). Thereafter, each such typedef name is syntactically equivalent to
a type specifier keywordfor the associated type.

For example, after
typedef long Blockno, *Blockptr;
typedef struct { double r, theta; } Complex;

the constructions
Blockno b;
extern Blockptr bp;
Complex z, *zp;

are legal declarations. The type of b is long,that of bp is "pointer to long,"and that
of z is the specified structure; zp is a pointer to such a structure.

typedef does not introduce new types, only synonymsfor types that could be speci­
fied in another way. In the example, b has the same type as any other long object.

Typedef names may be redeclared in an inner scope, but a non-empty set of type
specifiersmust be given. For example,

extern Blockno;
does not redeclare Blockno,but

extern int Blockno;

direct -abstract -declarator:
( abstract -declarator )
direct -abstract -declarator opt [ constant -expressionopt ]
direct -abstract -declarator opt parameter-type-list g. )

It is possibleto identify uniquely the location in the abstract-declarator where the identi­
fier would appear if the construction were a declarator in a declaration. The named type
is then the same as the type of the hypothetical identifier. For example,

int
int *
int *[3]
int (*)[]
int *()
int (*[])(void)

name respectively the types "integer," "pointer to integer," "array of 3 pointers to
integers," "pointer to an array of an unspecified number of integers," "function of
unspecified parameters returning pointer to integer," and "array, of unspecified size, of
pointers to functionswith no parameters each returning an integer."

DECLARATIONS 221SECTION A8



A9.3 Compound Statement

So that several statements can be used where one is expected, the compound state­
ment (also called "block") is provided. The body of a function definition is a compound
statement.

A9.2 Expression Statement

Most statements are expressionstatements, which have the form
expression-statement:

expressionopt ;

Most expressionstatements are assignments or function calls. All side effects from the
expression are completed before the next statement is executed. If the expression is
missing, the construction is called a null statement; it is often used to supply an empty
body to an iteration statement or to place a label.

A9.1 Labeled Statements

Statements may carry label prefixes.
labeled-statement:

identifier : statement
case constant-expression: statement
default : statement

A label consisting of an identifier declares the identifier. The only use of an identifier
label is as a target of qoto. The scopeof the identifier is the current function. Because
labels have their own name space; they do not interfere with other identifiers and cannot
be redeclared. See §AII.I.

Case labels and default labels are used with the switch statement (§A9.4). The
constant expressionof case must have integral type.

Labels in themselvesdo not alter the flowof control.

Except as described, statements are executed in sequence. Statements are executed
for their effect, and do not have values. They fall into several groups.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement

A9. Statements

alone implies long int). Structures, unions, and enumerations with different tags are
distinct, and a tagless union, structure, or enumeration specifiesa unique type.

Two types are the same if their abstract declarators (§A8.8), after expanding any
typedef types, and deleting any function parameter identifiers, are the same up to
equivalenceof type specifier lists. Array sizes and function parameter types are signifi­
cant.

APPENDIX A222 REFERENCE MANUAL



Selection statements chooseone of several flowsof control.
selection-statement:

if (expression) statement
if (expression) statement else statement
swi tch ( expression ) statement

In both forms of the if statement, the expression,which must have arithmetic or
pointer type, is evaluated, including all side-effects, and if it compares unequal to 0, the
first substatement is executed. In the second form, the second substatement is executed
if the expression is O. The else ambiguity is resolvedby connecting an else with the
last encountered else-less if at the same block nesting level.

The switch statement causes control to be transferred to one of several statements
depending on the value of an expression,which must have integral type. The substate­
ment controlled by a switch is typically compound. Any statement within the sub­
statement may be labeled with one or more case labels (§A9.l). The controlling
expressionundergoes integral promotion (§A6.1), and the case constants are converted to
the promoted type. No two of the case constants associated with the same switch may
have the same value after conversion. There may also be at most one default label
associated with a switch. Switches may be nested; a case or def aul t label is associ­
ated with the smallest switch that contains it.

When the switch statement is executed, its expression is evaluated, including all
side effects, and compared with each case constant. If one of the case constants is equal
to the value of the expression, control passes to the statement of the matched case
label. If no case constant matches the expression,and if there is a def aul t label, con­
trol passes to the labeled statement. If no case matches, and if there is no default,
then none of the substatements of the switch is executed.

In the first edition of this book, the controlling expression of swi tch, and the
case constants, were required to have int type.

A9.4 Selection Statementa

compound-statement:
{ declaration-listoP1 statement-listopt }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

If an identifier in the declaration-list was in scope outside the block, the outer declara­
tion is suspended within the block (see §A11.l), after which it resumes its force. An
identifier may be declared only once in the same block. These rules apply to identifiers
in the same name space (§AIl); identifiers in different name spaces are treated as dis­
tinct.

Initialization of automatic objects is performed each time the block is entered at the
top, and proceeds in the order of the declarators. If a jump into the block is executed,
these initializations are not performed. Initializations of static objects are performed
only once, before the program begins execution.

STATEMENTS 223SECTION A9



a continue not contained in a smaller iteration statement is the same as qoto
contino

A break statement may appear only in an iteration statement or a switch state­
ment, and terminates execution of the smallest enclosing such statement; control passes

contin: ;
}

contin: ,
} while ( .... );

contin: ;
}

A9.e Jump Statements

Jump statements transfer control unconditionally.
jump-statement:

qoto identifier ;
continue ;
break ;
return expressionopt

In the qoto statement, the identifier must be a label (§A9.1) located in the current
function. Control transfers to the labeled statement.

A continue statement may appear only within an iteration statement. It causes
control to pass to the loop-continuationportion of the smallest enclosingsuch statement.
More precisely,within each of the statements

while ( •.. ) { do { for ( ... ) {

}

Any of the three expressionsmay be dropped. A missing second expressionmakes
the implied test equivalent to testing a non-zeroconstant.

A9.S Iteration Statements

Iteration statements specify looping.
iteration-statement:

while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt ) statement

In the while and do statements, the substatement is executed repeatedly so long as
the value of the expression remains unequal to 0; the expressionmust have arithmetic or
pointer type. With while, the test, including all side effects from the expression,occurs
before each executionof the statement; with do,the test followseach iteration.

In the for statement, the first expression is evaluated once, and thus specifies ini­
tialization for the loop. There is no restriction on its type. The second expressionmust
have arithmetic or pointer type; it is evaluated before each iteration, and if it becomes
equal to 0, the for is terminated. The third expressionis evaluated after each iteration,
and thus specifies a re-initialization for the loop. There is no restriction on its type.
Side-effects from each expressionare completed immediately after its evaluation. If the
substatement does not contain continue, a statement

for (expression] ; expressionl ; expression] ) statement
is equivalent to

expression] ;
whi1e (expression2) {

statement
expression] ;

APPENDIXA114 REFERENCEMANUAL



A10.1 Function Definitiona

Function definitions have the form
function-definition:

declaration-specijiersopt declarator declaration-list.g, compound -statement
The only storage-class specifiers allowedamong the declaration specifiersare extern or
static; see §AI1.2 for the distinction between them.

A function may return an arithmetic type, a structure, a union, a pointer, or void,
but not a function or an array. The declarator in a function declaration must specify
explicitly that the declared identifier has function type; that is, it must contain one of
the forms (see §A8.6.3)

direct-declarator ( parameter-type-list )
direct-declarator ( identijier-listopt )

where the direct-declarator is an identifier or a parenthesized identifier. In particular, it
must not achieve function type by means of a typedef.

In the first form, the definition is a new-style function, and its parameters, together
with their types, are declared in its parameter type list; the declaration-list followingthe
function's declarator must be absent. Unless the parameter type list consists solely of
void, showing that the function takes no parameters, each declarator in the parameter
type list must contain an identifier. If the parameter type list ends with ", ••• " then
the function may be called with more arguments than parameters; the va_arg macro
mechanism defined in the standard header <stdarg. h>and described in Appendix B
must be used to refer to the extra arguments. Variadic functions must have at least one
named parameter.

In the second form, the definition is old-style: the identifier list names the

The unit of input provided to the C compiler is called a translation unit; it consistsof
a sequence of external declarations, which are either declarations or function definitions.

translation-unit:
external-declaration
translation- unit external-declaration

external-declaration:
function-definition
declaration

The scope of external declarations persists to the end of the translation unit in which
they are declared, just as the effect of declarations within blocks persists to the end of
the block. The syntax of external declarations is the same as that of all declarations,
except that only at this levelmay the code for functions be given.

A10. External Declarations

to the statement followingthe terminated statement.
A function returns to its caller -bythe return statement. When return is followed

by an expression, the value is returned to the caller of the function. The expression is
converted, as if by assignment, to the type returned by the function in which it appears.

Flowing off the end of a function is equivalent to a return with no expression. In
either case, the returned value is undefined.

EXTERNAL DECLARATIONS 225SECTION AIO



A 10.2 External Declaration8

External declarations specify the characteristics of objects, functions and other iden­
tifiers. The term "external" refers to their location outside functions, and is not directly
connected with the extern keyword; the storage class for an externally-declared object
may be left empty, or it may be specifiedas extern or static.

Several external declarations for the same identifier may exist within the same trans­
lation unit if they agree in type and linkage, and if there is at most one definition for the
identifier.

Two declarations for an object or function are deemed to agree in type under the
rules discussed in §AS.IO. In addition, if the declarations differ because one type is an
incomplete structure, union, or enumeration type (§A8.3) and the other is the
corresponding completed type with the same tag, the types.are taken to agree. More­
over, if one type is an incomplete array type (§AS.6.2) and the other is a completed

}

where now int max(a, b , c) is the declarator, and int a, b, c; is the declara­
tion list for the parameters.

}

Here int is the declaration specifier;max(int a, int b, int c) is the function's
declarator, and { ••• } is the block giving the code for the function. The correspond­
ing old-style definition would be

int max(a, b, c)
int a, b, c;
{

int m;
m = (a > b) ? a : b;
return (m > c) ? m : c;

parameters, whilethe declaration list attributes types to them. If no declaration is given
for a parameter, its type is taken to be into The declaration list must declare only
parameters named in the list, initialization is not permitted, and the only storage-class
specifier possibleis register.

In both styles of function definition, the parameters are understood to be declared
just after the beginning of the compoundstatement constituting the function's body, and
thus the same identifiers must not be redeclared there (although they may, like other
identifiers, be redeclared in inner blocks). If a parameter is declared to have type
"array of type," the declaration is adjusted to read "pointer to type;" similarly, if a
parameter is declared to have type "function returning type," the declaration is adjusted
to read "pointer to function returning type." During the call to a function, the argu­
ments are converted as necessary and assigned to the parameters; see §A7.3.2.

New-style function definitions are new with the ANSI standard. There is also a
small change in the details of promotion; the first edition specified that the
declarations of float parameters were adjusted to read double. The differ­
ence becomes noticeable when a pointer to a parameter is generated within a
function.

A complete example of a new-style function definition is
int max(int a, int b, int c)
{

APPENDIX A226 REFERENCE MANUAL



A11.1 Lexical Scope

Identifiers fall into several name spaces thai do not interfere with one another; the
same identifier may be used for different purposes, even in the same scope, if the uses
are in different name spaces. These classes are: objects, functions, typedef names, and
enwn constants; labels; tags of structures, unions, and enumerations; and members of
each structure or union individually.

These rules differ in several ways from those described in the first edition of
this manual. Labels did not previously have their own name space; tags of
structures and unions each had a separate space, and in some implementations

A11. Scope and Linkage

A program need not all be compiled at one time: the source text may be kept in
several files containing translation units, and precompiled routines may be loaded from
libraries. Communication among the functions of a program may be carried out both
through calls and through manipulation of external data.

Therefore, there' are two kinds of scope to consider: first, the lexical scope of an
identifier, which is the region of the program text within which the identifier's charac­
teristics are understood; and second, the scope associated with objects and functions with
external linkage, which determines the connections between identifiers in separately com­
piled translation units.

Although the one-definition rule is formulated somewhat differently in the first
edition of this book, it is in' effect identical to the one 'Stated here. Some imple­
mentations relax it by generalizing the notion of tentative definition. In the
alternate formulation, which is usual in UNIX systems and recognized as a com­
mon extension by the Standard, all the tentative definitions for an externally­
linked object, throughout all the translation units of a program, are considered
together instead of in each' translation unit separately. If a definition occurs
somewhere in. the program, then the' tentative definitions become merely
declarations,' but if no definition appears, then all its tentative definitions
become a definition with initializer O.

array type, the types, if otherwise identical, are also taken to agree. Finally, if one type
specifies an old-style function, and the other an otherwise identical new-style function,
with parameter declarations, the types are taken to agree.

If the first external declaration for a function or object includes the static speci­
fier, the identifier has internal linkage; otherwise it has external linkage. Linkage is
discussed in §A11.2.

An external declaration for an object is a definition if it has an iriitializer. An exter­
nal object declaration that does not have an initializer, and does not contain the extern
specifier, is a tentative definition. If a definition for an object appears in a translation
unit, any tentative definitions are treated merely as redundant declarations, If no defini­
tion for the object appears in the translation unit, all its tentative definitions become a
single definition with initializer O.

Each object must have exactly one definition. For objects with internal linkage, this
rule applies' separately to each translation unit, because internally-linked objects are
uniqueto a translation unit. For objects with external linkage, it applies to the entire
program.

SCOPE AND LINKAGE l'J,7SECTION All



A preprocessorperforms macro substitution, conditional compilation,and inclusionof
named files. Lines beginning with I, perhaps preceded by white space, communicate
with this preprocessor. The syntax of these lines is independent of the rest of the
language; they.may appear anywhere and have effect that lasts (independent of scope)
until the end of the translation unit. Line boundaries are significant; each line is
analyzed individually (but see §A12.2 for how to adjoin lines). To the preprocessor,a
token is any language token, or a character sequence giving a file name as in the
linclude directive (§A12.4); in addition, any character not otherwise defined is taken
as a token. However, the effect of white space characters other than space and horizon­
tal tab is undefined within preprocessorlines.

Preprocessing itself takes place in several logically successivephases that may, in a

A12. Preprocessing

A11.2 Linkage

Within a translation unit, all declarations of the same object or function identifier
with internal linkage refer to the same thing, and the object or function is unique to that
translation unit. All declarations for the same object or function identifier with external
linkage refer to the same thing, and the object or function is shared by the entire pro­
gram.

As discussed in §A10.2, the first external declaration for an identifier gives the iden­
tifier internal linkage if. the static specifier is used, external linkage otherwise. If a
declaration for an identifier within a block does not include the extern specifier, then
the identifier has no linkage and is unique to the function. If it does include extern,
and an external declaration for the identifier is active in the scope surrounding the block,
then the identifier has the same linkage as the external declaration, and refers to the
same object or function; but if no external declaration is visible, its linkage is external.

enumeration tags did as well; putting different kinds of tags into the same space
is a new restriction. The most important departure from the first edition is that
each structure or union creates a separate. name space for its members, so that
the same name may appear in several different structures. This rule has been
common practice for several years.

The lexical scope of an object or function identifier in an external declaration begins
at the end of its declarator and persists to the end of the translation unit in which it
appears. The scope of a parameter of a function definition begins at the start of the
block defining the function, and persists through the function; the scope of a parameter
in a function declaration ends at the end of the declarator. The scope of an identifier
declared at the head of a block begins at the end of its declarator, and persists to the
end of the block. The scope of a label is the whole of the function in which it appears.
The scope of a structure, union, or enumeration tag, or an enumeration constant, begins
at its appearance in a type specifier, and persists to the end of the translation unit (for
declarations at the external level) or to the end of the block (for declarations within a
function).

If an identifier is explicitly declared at the head of a block, including the block con­
stituting a function, any declaration of the identifier outside the block is suspendeduntil
the end of the block.

APPENDIX A118 REFERENCE MANUAL



A12.3 Macro I\)efinition and Expansion

A control line of the form
# define identifier token-sequence

causes the preprocessor to replace subsequent instances of the identifier with the given
sequence of tokens; leading and trailing white space around the token sequence is dis­
carded. A second #define for the same identifier is erroneous unless the second token
sequence is identical to the first, where all white space separations are taken to be
equivalent.

A line of the form
# define identifier ( identifier-list) token-sequence

where there is no space between the first identifier and the (, is a macro definitionwith
parameters given by the identifier list. As with the first form, leading and trailing white
space around the token sequence is discarded, and the macro may be redefined onlywith

A12.2 Line Splicing

Lines that end with the backslash character \ are folded by deleting the backslash
and the followingnewlinecharacter. This occurs before divisioninto tokens.

??< {
??> }
??-

??(
??)
??I

??= #
??I \
??'

No other such replacements occur.
Trigraph sequences are new with the ANSI standard.

A12.1 Trigraph Sequences

The character set of C source programs is contained within seven-bitASCII, but is a
superset of the ISO 646-1983 Invariant Code Set. In order to enable programs to be
represented in the reduced set, all occurrences of the followingtrigraph sequences are
replaced by the corresponding single character. This replacement occurs before any
other processing.

particular implementation,be condensed.
1. First, trigraph sequences as described in §A12.1 are replaced by their equivalents.

Should the operating system environment require it, newline characters are intro­
duced between the lines of the source file.

2. Each occurrence of a backslash character \ followedby a newline is deleted, thus
splicing lines (§AI2.2).

3. The program is split into tokens separated by white-space characters; comments are
replaced by a single space. Then preprocessing directives are obeyed, and macros
(§§AI2.3-AI2.10) are expanded.

4. Escape sequences in character constants and string literals (§§A2.5.2, A2.6) are
replaced by their equivalents; then adjacent string literals are concatenated.

5. The result is translated, then linked together with other programs and libraries, by
collecting the necessary programs and data, and connecting external function and
object references to their definitions.

PREPROCESSING 229SECTION Al2



a definition in which the number and spellingof parameters, and the token sequence, is
identical.

A control line of the form
# undef identifier

causes the identifier's preprocessor definition to be forgotten. It is not erroneous to
apply lundef to an unknown identifier.

When a macro has been defined in the second form, subsequent textual instances of
the macro identifier followed by optional white space, and then by (, a sequence of
tokens separated by commas, and a ) constitute a call of the macro. The arguments of
the call are the comma-separated token sequences;commas that are quoted or protected
by nested parentheses do not separate arguments. During collection, arguments are not
macro-expanded. The number of arguments in the call must match the number of
parameters in the definition. After the arguments are isolated, leading and trailing
white space is removed from them. Then the token sequence resulting from each argu­
ment is substituted for each unquoted occurrence of the correspondingparameter's iden­
tifier in the replacement token sequence of the macro. Unless the parameter in the
replacement sequence is preceded by #,or preceded or followed by ##, the argument
tokens are examined for macro calls, and expanded as necessary,just before insertion.

Two special operators influence the replacement process. First, if an occurrence of a
parameter in the replacement token sequence is immediately preceded by #, string
quotes (n) are placed around the correspondingparameter, and then both the # and the
parameter identifier are replaced by the quoted argument. A \ character is inserted
before each "or \ character that appears surrounding, or inside, a string literal or char­
acter constant in the argument.

Second, if the definition token sequence for either kind of macro contains a ##
operator, then just after replacement of the parameters, each ## is deleted, together with
any white space on either side, so as to concatenate the adjacent tokens and form a new
token. The.effect is undefined if invalid tokens are produced, or if the result depends on
the order of processingof the ## operators. Also, ## may not appear at the beginning
or .end of a replacement token sequence.

In both kinds of macro, the replacement token sequence is repeatedly rescanned for
more defined identifiers. However, once a given identifier has been replaced in a given
expansion, it is not replaced if it turns up again during rescanning; instead it is left
unchallged.

Even if the final value of a macro expansion begins with #, it is not taken to be a
preprocessingdirective.

The details of the macro-expansion process are described more precisely in the
ANSI standard than in the first edition. The most important change is the addi­
tion of the # and ## operators, which make quotation and concatenation admis­
sible. Some of the new rules, especially those involving concatenation, are
bizarre. (See example below.)

For example, this facility may be used for "manifest constants," as in
#define TABSIZE 100
int table[TABSIZE];

The definition
#define ABSDIFF(a, b) «a»(b)? (a)-(b) : (b)-(a»

defines a macro to return the absolute value of the difference between its arguments.
Unlike a function to do the same thing, the arguments and returned value may have any

APPENDIX A230 REFERENCE MANUAL



A12.5 Conditional Compilation

Parts of a program may be compiled conditionally, according to the following
schematic syntax.

A12.4 File Inclu8ion

A control line of the form
# include «filename»

causes the replacement of that line by the entire contents of the file filename. The
characters in the name filename must not include > or newline, and the effect is unde­
fined if it contains any of ", " \, or / *. The named file is searched for in a sequence
of implementation-dependent places.

Similarly, a control line of the form
I include "filename"

searches first in association with the original source file (a deliberately implementation­
dependent phrase), and if that search fails, then as if in the first form. The effect of
using " \, or / * in the filename remains undefined, but > is permitted.

Finally, a directive of the form
# include token-sequence

not matching one of the previous forms is interpreted by expanding the token sequence
as for normal text; one of the two forms with <... > or "... " must result, and it is then
treated as previously described.

linclude files may be nested.

arithmetic type or even be pointers. Also, the arguments, which might have side effects,
are evaluated twice, once for the test and once to produce the value.

Given the definition
#define tempfile{dir) Idir "/%s"

the macro call tempfile (/usr /tmp) yields
"/usr/tmp" "/"s"

which will subsequently be catenated into a single string. After
#define cat{x, y) x II y

the call cat{var, 123) yields var123. However, the call cat{ cat{ 1,2) ,3» is
undefined: the presence of II prevents the arguments of the outer call from being
expanded. Thus it produces the token string

cat (1 2) 3
and }3 (the catenation of the last token of the first argument with the first token of the
second) is not a legal token. If a second level of macro definition is introduced,

#define xcat(x,y) cat{x,y)
things work more smoothly; xcat{xcat{ 1, 2), 3) does produce 123,because the
expansion of xcat itself does not involve the II operator.

Likewise, ABSDIFF (ABSDIFF ( a ,b) ,c) produces the expected, fully-expanded
result.

PREPROCESSING 231SECTION Al2



#elif is new since the first edition. although it has been available in some
preprocessors. The defined preprocessor operator is also new.

respectively.

defined ( identifier)
are replaced, before scanning for macros, by 1L if the identifier is defined in the prepro­
cessor, and by OL if not. Any identifiers remaining after macro expansion are replaced
by OL. Finally, each integer constant is considered to be suffixed with L, so that all
arithmetic is taken to be long or unsigned long.

The resulting constant expression (§A7.19) is restricted: it must be integral, and may
not contain sizeof, a cast, or an enumeration constant.

The control lines
#ifdef identifier
#ifndef identifier

are equivalent to
# if defined identifier
# if I defined identifier

or

else-line:
# else

Each of the directives (if-line, elif-line, else-line, and #endif) appears alone on a line.
The constant expressionsin #if and subsequent #elif lines are evaluated in order until
an expressionwith a non-zero value is found; text followinga linewith a zero value is
discarded. The text followingthe successful directive line is treated normally. "Text"
here refers to any material, including preprocessor lines, that is not part of the condi­
tional structure; it may be empty. Once a successful#if or #elif line has been found
and its text processed, succeeding #elif and #else lines, together with their text, are
discarded. If all the expressionsare zero, and there is an #else, the text followingthe
#else is treated normally. Text controlled by inactive arms of the conditional is
ignored except for checking the nesting of conditionals. .

The constant expression in #if and #elif is subject to ordinary macro replace­
ment. Moreover,any expressionsof the form

defined identifier

else-part:
else-line text

preprocessor-conditional:
if-line text elif-parts else-partopt #endif

if-line:
# if constant-expression
# ifdef identifier
# ifndef identifier

elif-parts:
elif-line text
eli/-partsopt

elif-ltne:
# elif constant-expression

APPENDIX A232 REFERENCE MANUAL



A decimal constant containing the current source line number.
A string literal containing the name of the file being compiled.
A string literal containing the date of compilation, in the form
"Mmm dd yyyy".
A string literal containing the time of compilation, in the form
"hh:mm:ss".
The constant 1. It is intended that this identifier be defined to be 1
only in standard-conforming implementations.

#error and #pragma are new with the ANSI standard; the
predefined preprocessor macros are new, but some of them
have been available in some implementations.

STDC

__TIME__

__LINE__
FILE__

__DATE__

A12.10 Predefined Names

Several identifiers are predefined, and expand to produce special information. They,
and also the preprocessor expression operator defined, may not be undefined or rede­
fined.

A12.9 Null Directive

A preprocessor line of the form
#

has no effect.

A12.8 Pragmas

A control line of the form
# pragma token-sequence.g,

causes the processor to perform an implementation-dependent action. An unrecognized
pragma is ignored.

A12.7 Error Generation

A preprocessor line of the form
# error token-sequence.i,

causes the processor to write a diagnostic message that includes the token sequence.

# line constant "filename"
# 1ine constant

causes the compiler to believe, for purposes of error diagnostics, that the line number of
the next source line is given by the decimal integer constant and the current input file is
named by the identifier. If the quoted filename is absent, the remembered name does
not change. Macros in the line are expanded before it is interpreted.

A12.6 Line Control

For the benefit of other preprocessors that generate C programs, a line in one of the
forms

PREPROCESSING 233SECTION A12



translation-unit:
external-declaration
translation- unit external-declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiers.c. declarator declaration-Iistopt compound-statement

declaration:
declaration-specifiers init -declarator-Iistopt

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-spectfiers.q,
type-specifier declaratton-speciftersg;
type-qualifier declaration-specifiersg;

storage-class-specifier: one of
auto register static extern typedef

type-specifier: one of
void char short int long float double signed
unsigned struct-or-union-specifler ' enum-specifier typedef-name

type-qualifier: one of
const volatile

struct -or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct -or- union identifier

struct-or-union: one of
struct union

struct -declaration-list:
struct -declaratton
struct -declaration-ltst struct -declaration

Belowis a recapitulation of the grammar that was given throughout the earlier part
of this appendix. It has exactly the same content, but is in a different order.

The grammar has undefined terminal symbols integer-constant, character-constant,
floating-constant, identifier, string, and enumeration-constant; the typewriterstyle
words and symbols are terminals given literally. This grammar can be transformed
mechanically into input acceptable to an automatic parser-generator. Besides adding
whatever syntactic marking is used to indicate alternatives in productions, it is necessary
to expand the "one or' constructions, and (depending on the rules of the parser­
generator) to duplicate each production with an opt symbol, once with the symbol and
once without. With one further change, namely deleting the production typedef-name:
identifier and making typedef-name a terminal symbol, this grammar is acceptable to
the YACC parser-generator. It has only one conflict, generated by the if-elseambi­
guity.

A13. Grammar

APPENDIX A234 REFERENCE MANUAL



init -declarator-list:
init -declarator
init-declarator-list , init-declarator

init -declarator:
declarator
declarator = initializer

struct -declaration:
specifier-qualifier-list struct -declarator-list

specifier-qualifier-list:
type-specifier specifier-qualifier-ltst.p
type-qualifier specifier-qualifier-listg;

struct -declarator-list:
struct -declarator
struct -declarator-list , struct -declarator

struct -declarator:
declarator
declarator opt : constant -expression

enum -specifier:
enum identifier opt { enumerator-list }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant -expression

declarator:
pointer optdirect -declarator

direct -declarator:
identifier
( declarator )
direct-declarator [ constant-expression.g, ]
direct-declarator ( parameter-type-list )
direct-declarator ( tdenttfier-list c; )

pointer:
* type-qualifier-list opt
* type-qualifier-listopt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

GRAMMAR 235SECTION A13



APPENDIX A

expression-statement:
expressionopt ;

compound -statement:
{ declaration-listopt statement-listopt }

statement -list:
statement
statement-list statement

selection-statement:
if (expression ) statement
if (expression) statement else statement
switch (expression ) statement

type-name:
specifier-qualifier-list abstract -declarator opt

abstract -declarator:
pointer .
pointer opt direct-abstract-declarator

direct -abstract -declarator:
( abstract -declarator )
direct -abstract -declarator opt [ constant -expressionopt ]
direct-abstract-declaratorg; ( parameter-type-listg. )

typedef-name:
identifier

statement:
labeled -statement
expression-statement
compound -statement
selection-statement
iteration-statement
jump-statement

labeled -statement:
identifier : statement
case constant-expression statement
default : statement

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract -declarator opt

identifier-list:
identifier
identifier-list , identifier

inittalizer:
assignment -expression
{ inuializer-list }
{ initializer-list, }

initializer-list:
initializer
initializer-list , initializer

236 REFERENCE MANUAL



conditional-expression:
logical-l)~-expression
logical-on-expression ? expression: conditional-expression

constant -expression:
conditional-expression

logical-ate -expression:
logical- AND-expression
logical-Ok-expression : : logical-AND-expression

logical- ANIr-expression:
tnclusive-on -expression
logical-AND-expression &.&. inclusive-Ok-expresston

inclusive-on-expression:
exclustve-ok -expression
tnclustve-ok-expresston : exclustve-on-expresston

exclustve-ok-expresston:
AND-expression
exclustve-on-expression ,. AND-expression

AND-expressiolt'
equality-expression
AND-expression &. equality-expression

equality-expression:
relational-expression
equality-expression = = relational-expression
equality-expression I= relational-expression

relational-expresston:
shift -expression
relational-expression < shift -expression
relational-expression > shift -expression
relational-expression < = shift -expression
relational-expression >= shift -expression

iteration-statement:
while (expression) statement
do statement while ( expression) ;
for (expressionopI ; expressionopl ; expressionoP1 ) statement

jump-statement:
goto identifier
continue ;
break ;
return expressionoP1

expression:
assignment -expression
expression , assignment -expression

assignment-expressiolt'
conditional-expression
unary-expression assignment -operator assignment -expression

assignment -operator: one of
= *= /= %= += -= «= »= &= = 1=

GRAMMAR 237SECTION Al3



shift -expression:
additive-expression
shift-expression < < additive-expression
shift -expression > > additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
cast -expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression" cast-expression

cast -expression:
unary-expression
( type-name) cast-expression

unary-expression:
postfix -expression
++ unary-expression
-- unary-expression
unary -operator cast -expression
sizeof unary-expression
sizeof (type-name )

unary-operator: one of
&. * +

postfix -expression:
primary-expression
postfix-expression [ expression]
postfix-expression ( argument-expression-list g,

postfix-expression • identifier
postfix-expression -> identifier
postfix -expression + +
postfix-expression --

primary -expression:
identifier
constant
string
( expression

argument -expresston-list:
assignment -expression
argument -expression-list , assignment -expression

constant:
integer-constant
character-constant
floating-constant
enumeration-constant

The foIiowinggrammar for the preprocessor summarizes the structure of control
lines, but is not suitable for mechanized parsing. It includes the symbol text, which
means ordinary program text, non-conditional preprocessor control lines, or complete
preprocessorconditionalconstructions.

APPENDIX A238 REFERENCE MANUAL



preprocessor-conditional:
if-line text elif-parts else-partopt # endif

if-line:
# if constant-expression
# ifdef identifier
# ifndef identifier

elif-parts:
elif-line text
eli/-partsoP1

elif-line:
# elif constant-expression

else-part:
else-line text

else-line:
# else

control-line:
# define identifier token-sequence
# define identifier ( identifier , ... ,identifier) token-sequence
# undef identifier
# include «filename»
# include "filename"
# include token-sequence
# line constant "filename"
# line constant
# error token-sequenceopt
# pragma token-sequenceopt
#
preprocessor-conditional

GRAMMAR 239SECTION Al3





241

The input and output functions, types, and macros defined in <stdio.'h>represent
nearly one third of the library.

A stream is a source or destination of data that may be associated with a disk or
other peripheral. The library supports text streams and binary streams, although on
some systems, notably UNIX, these are identical. A text stream is a sequence of lines;
each line has zero or more characters and is terminated by , \n '. An environmentmay
need to convert a text stream to or from some other representation (such as mapping
,\n' to carriage return and linefeed). A binary stream is a sequence of unprocessed
bytes that record internal data, with the property that if it is written, then read back on
the same system, it will compare equal.

A stream is connected to a file or device by opening it; the connection is broken by

B1. Input and Output: <atdlo.h>

<stdlib.h>
<string.h>
<time.h>

<stdarg.h>
<stddef.h>
<stdio.h>

<math.h>
<setjmp.h>
<signa1.h>

<assert.h> <float.h>
<ctype.h> <limits.h>
<errno.h> <locale.h>

A header can be accessed by
#include <header>

Headers may be included in any order and any number of times. A header must be
included outside of any external declaration or definition and before any use of anything
it declares. A header need not be a source file.

External identifiers that begin with an underscore are reserved for use by the library,
as are all other identifiers that begin with an underscore and an upper-case letter or
another underscore.

This appendix is a summary of the library defined by the ANSI standard. The
standard library is not part of the C language proper, but an environment that supports
standard C will provide the function declarations and type and macro definitions of this
library. We have omitted a few functions that are of limited utility or easily synthesized
from others; we have omitted multi-byte characters; and we have omitted discussionof
locale issues, that is, properties that depend on local language, nationality, or culture.

The functions, types and macros of the standard library are declared in standard
headers:

APPENDIX B: Standard Library



int rename(const char *oldname, const char *newname)
rename changes the name of a file; it returns non-zero if the attempt fails.

int remove(const char *filename)
remove removes the named file, so that a subsequent attempt to open it will fail. It
returns non-zero if the attempt fails.

int fclose(FILE *stream)
fclose flushes any unwritten data for stream,discards any unread buffered input,
frees any automatically allocated buffer, then closes the stream. It returns EOF if
any errors occurred, and zero otherwise.

int fflush(FILE *stream)
On an output stream, fflush causes any buffered but unwritten data to be written;
on an input stream, the effect is undefined. It returns EOF for a write error, and
zero otherwise. fflush (NULL) flushes all output streams.

FILE *freopen(const char *filename, const char *mode,
FILE *stream)

freopen opens the file with the specified mode and associates the stream with it. It
returns stream,or NULL if an error occurs. freopen is normally used to change
the files associated with stdin,stdout,or stderr.

Update mode permits reading and writing the same file; fflush or a file-positioning
function must be called between a read and a write or vice versa. If the mode
includes b after the initial letter, as in "rb" or "w+b", that indicates a binary file.
Filenames are limited to FILENAME_MAX characters. At most FOPEN_MAX files
may be open at once.

"r" open text file for reading
"w" create text file for writing; discard previous contents if any
"a" append; open or create text file for writing at end of file
"r+ " open text file for update (i.e., reading and writing)
"w+" create text file for update; discard previous contents if any
"a+" append; open or create text file for update, writing at end

FILE *fopen(const char *filename, const char *mode)
fopen opens the named file, and returns a stream, or NULL if the attempt fails.
Legal values for mode include

B 1. 1 File Operations

The following functions deal with operations on files. The type size_t is the
unsigned integral type produced by the sizeof operator.

closing the stream. Opening a file returns a pointer to an object of type FILE,which
records whatever information is necessary to control the stream. We will use "file
pointer" and "stream" interchangeably when there is no ambiguity.

When a program begins execution, the three streams stdin,stdout,and stderr
are already open.

APPENDIX B242 STANDARD LIBRARY



81.2 FQrmaHedOutput

The printf functions provide formatted output conversion.

int fprintf(FILE *stream, const char *format, ... )
fprintf converts and writes output to stream under the control of format. The

return value is the number of characters written, or negative if an error occurred.
The format string contains two types of objects: ordinary characters, which are

copied to the output stream, and conversion specifications, each of which causes conver­
sion and printing of the next successive argument to fprintf. Each conversion specifi­
cation begins with the character " and ends with a conversion character. Between the "
and the conversion character there may be, in order:

• Flags (in any order), which modify the specification:
-, which specifies left adjustment of the converted argument in its field.

+, which specifies that the number will always be printed with a sign.
space: if the first character is not a sign, a space will be prefixed.
0: for numeric conversions, specifies padding to the field width with leading zeros.
#, which specifies an alternate output form. For 0, the first digit will be zero. For x or X,
Ox or ox will be prefixed to a non-zero result. For e, E, f, g, and G, the output will always
have a decimal point; for g and G, trailing zeros will not be removed.

• A number specifying a minimum field width. The converted argument will be printed in a field
at least this wide, and wider if necessary. If the converted argument has fewer characters than
the field width it will be padded on the left (or right, if left adjustment has been requested) to
make up the field width. The padding character is normally space, but is 0 if the zero padding
flag is present.

FILE *tmpfile(void)
tmpfile creates a temporary file of mode "wb+" that will be automatically
removed when closed or when the program terminates normally. tmpfile returns a
stream, or NULLif it could not create the file.

char *tmpnam(char s[L_tmpnam])
tmpnam(NULL)creates a string that is not the name of an existing file, and returns
a pointer to an internal static array. tmpnam(s) stores the string in s as well as
returning it as the function value; s must have room for at least L_tmpnamcharac­
ters. tmpnamgenerates a different name each time it is called; at most TMP_MAX
different names are guaranteed during execution of the program. Note that tmpnam
creates a name, not a file.

int setvbuf(FILE *stream, char *buf, int mode, size_t size)
setvbuf controls buffering for the stream; it must be called before reading, writing,
or any other operation. A mode of _IOFBF causes full buffering, _IOLBFline
buffering of text files, and _IONBFno buffering. If buf is not NULL,it will be used
as the buffer; otherwise a buffer will be allocated. size determines the buffer size.
setvbuf returns non-zero for any error.

void setbuf(FILE *stream, char *buf)
If buf is NULL,buffering is turned off for the stream. Otherwise, setbuf is
equivalent to (void) setvbuf (stream, buf, _IOFBF, BUFSIZ).

243INPUT AND OUTPUT: <STDIO.H>SECTION Bl



int printf(const char *format •... )
printf (...) is equivalent to fprintf (stdout .... ).

d, i int; signed decimal notation.
o int; unsigned octal notation (without a leading zero).
x, X int; unsigned hexadecimal notation (without a leading Oxor

OX),using abcdef for Oxor ABCDEFfor ox.
u int; unsigned decimal notation.
c int; single character, after conversionto unsigned char.
s char *; characters from the string are printed until a ' \0' is

reached or until the number of characters indicated by the pre­
cision have been printed.

f double; decimal notation of the form [- ]mmm.ddd, where the
number of d's is specified by the precision. The default preci­
sion is 6; a precisionof 0 suppresses the decimal point.

e, E double; decimal notation of the form [--]m.dddddde±xx or
[-]m.ddddddE±Xx, where the number of d's is specified by the
precision. The default precision is 6; a precisionof 0 suppresses
the decimal point.

g, G double; "e or "E is used if the exponent is less than -4 or
greater than or equal to the precision; otherwise "f is used.
Trailing zeros and a trailing decimal point are not printed.

p void *; print as a pointer (implementation-dependent represen­
tation).

n int *; the number of characters written so far by this call to
printf is written into the argument. No argument is con­
verted.

" no argument is converted;print a ".

CHARACTER ARGUMENT TYPE; CONVERTED TO

TABLE B-1. PRINTF CONVERSIONS

Width or precision or both may be specified as *, in which case the value is computed
by converting the next argument(s), which must be into

The conversioncharacters and their meanings are shown in Table B-1. If the char­
acter after the" is not a conversioncharacter, the behavior is undefined.

• A period, which separates the field width from theprecision,

• A number, the precision, that specifies the maximum number of characters to be printed from a
string, or the number of digits to be printed after the decimal point for e, E, or f conversions, or
the number of significant digits for g or G conversion, or the minimum number of digits to be
printed for an integer Oeading Oswill be added to make up thenecessary width}.

• A length modifier h, 1 (letter ell), or L. "h" indicates that the corresponding argument is to be
printed as a short or unsigned short; "L" indicates that the argument is a long or
unsigned long; "L" indicates that the argument is a long double.

APPENDIXB244 STANDARDLIBRARY



A conversion specification determines the conversionof the next input field. Nor­
mally the result is placed in the variable pointed to by the correspondingargument. If
assignment suppression is indicated by *, as in ,,*S, however, the input field is simply
skipped; no assignment is made. An input field is defined as a string of non-white space
characters; it extends either to the next white space character or until the field width, if
specified, is exhausted. This implies that scanf will read across line boundaries to find
its input, since newlines are white space. (White space characters are blank, tab, new­
line, carriage return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The
correspondingargument must be a pointer. The legal conversioncharacters are shownin
Table B-2.

The conversioncharacters d, i, n, 0, u, and x may be preceded by h if the argument
is a pointer to short rather than int,or by 1 (letter ell) if the argument is a pointer
to long. The conversioncharacters e,f,and q may be preceded by 1 if a pointer to
double rather than float is in the argument list, and by L if a pointer to a lonq
double.

• Conversion specifications, consisting of a %, an optional assignment suppression character *, an
optional number specifying a maximum field width, an optional h. 1, or L indicating the width
of the target, and a conversion character.

• Blanks or tabs, which are ignored.

• Ordinary characters (not x), which are expected to match the next non-white space character of
the input stream.

int fscanf(FILE *stream, const char *format, •..)
fscanf reads from stream under control of format,and assigns converted values

through subsequent arguments, each of which must be a pointer. It returns when
format is exhausted. fscanf returns EOF if end of file or an error occurs before any
conversion;otherwise it returns the number of input items converted and assigned.

The format string usually contains conversionspecifications,which are used to direct
interpretation of input. The format string may contain:

B 1.3 Formatted Input

The scanf functions deal with formatted input conversion.

vprintf(const char *format, va_list arg)
vfprintf(FILE *stream, const char *format, va_list arg)
vsprintf(char *s, const char *format, va_list arq)

The functions vprintf, vfprintf, and vsprintf are equivalent to the
corresponding printf functions, except that the variable argument list is replaced
by arq,which has been initialized by the va_start macro and perhaps va_arq
calls. See the discussionof <stdarq .h> in Section B7.

int sprintf(char *s, const char *format, .••)
sprintf is the same as printf except that the output is written into the string s,
terminated with ' \0'. s must be big enough to hold the result. The return count
does not include the ' \0' .

INPUT AND OUTPUT: <STOIO.H> 245SECTION B1



int fgetc{FILE *stream)
fgetc returns the next character of stream as an unsigned char (converted to
an int), or EOFif end of file or error occurs.

B1.4 Character Input and Output Functions

int sscanf{char *s, const char *format, .•. )
sscanf ( s, ... ) is equivalent to scanf (... ) except that the input characters are
taken from the string s.

int scanf{const char *format, ... )
scanf (... ) is identical to fscanf ( stdin, ... ).

CHARACTER INPUT DATA; ARGUMENT TYPE

d decimal integer; int *.
i integer; int *. The integer may be in octal (leading 0) or

hexadecimal (leading Ox or OX).
o octal integer (with or without leading zero); int *.
u unsigned decimal integer; unsigned int *.
x hexadecimal integer (with or without leading Ox or OX); int *.
c characters; char *. The next input characters are placed in the

indicated array, up to the number given by the width field; the
default is 1. No ' \0' is added. The normal skip over white
space characters is suppressed in this case; to read the next
non-white space character, use %1s.

s string of non-white space characters (not quoted); char *,
pointing to an array of characters large enough to hold the
string and a terminating , \0' that will be added.

e, f, g floating-point number; float *. The input format for float's
is an optional sign, a string of numbers possibly containing a
decimal point, and an optional exponent field containing an E or
e followedby a possiblysigned integer.

p pointer value as printed by printf{ ""p"); void *.
n writes into the argument the number of characters read so far

by this call; int *. No input is read. The converted item count
is not incremented.

[... ] matches the longest non-empty string of input characters from
the set between brackets; char *. A ' \0' is added. [] ...]
includes ] in the set.

[ A... ] matches the longest non-empty string of input characters not
from the set between brackets; char *. A ' \0' is added.
[ A ] ... ] includes ] in the set.

" literal "; no assignment is made.

TABLE B-2. SCANF CONVERSIONS

APPENDIXB246 STANDARDLIBRARY



size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream)
fread reads from stream ink>the array ptr at most nobj objects of size size.
fread returns the number of objects read; this may be less than the number
requested. feof and ferror must be used to determine status.

size_t fwrite(const void *ptr, size_t size, size_t nobj,
FILE *stream)

fwrite writes, from the array ptr, nobj objects of size size on stream. It
returns the number of objects written, which is less than nobj on error.

B 1.5 Direct Input and Output Functions

int ungetc(int c, FILE *stream)
ungetc pushes c (converted to an unsigned char) back onto stream,where it
will be returned on the next read. Only one character of pushback per stream is
guaranteed. EOF may not be pushed back. ungetc returns the character pushed
back, or EOF for error.

int putchar(int c)
putchar (c) is equivalent to putc (c,stdout).

int puts(const char *s)
puts writes the string s and a newline to stdout. It returns EOF if an error
occurs, non-negativeotherwise.

int getchar(void)
getchar is equivalent to getc (stdin).

char *gets(char *s)
gets reads the next input line into the array s;it replaces the terminating newline
with ' \0'. It returns s,or NULL if end of file or error occurs.

int putc(int c, FILE *stream)
putc is equivalent to fputc except that if it is a macro, it may evaluate stream
more than once.

int fputs(const char *s, FILE *stream)
fputs writes the string s (which need not contain ' \n,)on stream;it returns
non-negative,or EOF for an error.

int getc(FILE *stream)
getc is equivalent to fgetc except that if it is a macro, it may evaluate stream
more than once.

char *fgets(char *s, int n, FILE *stream)
fgets reads at most the next n-1 characters into the array s,stopping if a newline
is encountered; the newline is included in the array, which is terminated by '\0'.
fgets returns s,or NULL if end of file or error occurs.

int fputc(int c, FILE *stream)
fputc writes the character c (converted to an unsigned char) on stream. It
returns the character written, or EOF for error.

INPUT AND OUTPUT: <STDIO.H> 247SECTION Bl



82. CharacterClas. Te.t.: <ctype.h>
The header <ctype. h> declares functions for testing characters. For each function,

the argument is an int, whose value must be EOFor representable as an unsigned

void clearerr(PILE *stream)
clearerr clears the end of file and error indicators for stream.

int feof(FILE *stream)
feof returns non-zero if the end of file indicator for stream is set.

int ferror(FILE *stream)
f error returns non-zero if the error indicator for stream is set.

void perror(const char *s)
perror (s) prints s and an implementation-definederror message correspondingto
the integer in errno, as if by

fprintf (stderr, ""s: "s\n", s, "errormessage" )
See strerror in Section B3.

81.7 Error Functions

Many of the functions in the library set status indicators when error or end of file
occur. These indicators may be set and tested explicitly. In addition, the integer expres­
sion errno (declared in <errno. h» may contain an error number that gives further
information about the most recent error.

int fsetpos(FILE *stream, const fpos_t *ptr)
fsetpos positions stream at the position recorded by fgetpos in *ptr.
fsetpos returns non-zero on error.

/

long ftell(FILE *stream)
ftell returns the current file position for stream, or -1L on error.

void rewind(FILE *stream)
rewind(fp) is equivalent to fseek(fp,OL,SEEK_SET); clearerr(fp).

int fgetpos(FILE *stream, fpos~t *ptr)
fgetpos records the current position in stream in *ptr, for subsequent use by
fsetpos. The type fpos_ t is suitable for recording such values. fgetpos
returns non-zero on error.

int fseek(FILE *stream, long offset, int origin)
f seek sets the file position for stream; a subsequent read or write will access data
beginning at the new position. For a binary file, the position is set to offset char­
acters from origin, which may be SEEK_SET(beginning), SEEK_CUR(current
position), or SEEK_END(end of file). For a text stream, offset must be zero, or a
value returned by ftell (in which case origin must be SEEK_SET).fseek
returns non-zeroon error.

81.6 File Positioning Functions

APPENDIX B148 STANDARD LIBRARY



copy string ct to string s, including , \ 0 '; return S.
copy at most n characters of string ct to s; return S.

Pad with ' \ 0 ' s if t has fewer than n characters.
concatenate string ct to end of string s; return S.

concatenate at most n characters of string ct to string
s, terminate s with ' \0'; return S.

compare string cs to string ct; return <0 if cs<ct, 0
if cs==ct, or >0 if cs>ct.
compare at most n characters of string cs to string ct;
return <0 if cs-ece, 0 if cs==ct, or >0 if cs>ct.
return pointer to first occurrence of c in cs or NULL if
not present.
return pointer to last occurrence of c _incs or NULL if
not present.

char *strcpy(s,ct)
char *strncpy(s,ct,n)

char *strcat(s,ct)
char *strncat(s,ct,n)

int strcmp(cs,ct)

int strncmp(cs,ct,n)

char *strchr(cs,c)

char *strrchr(cs,c)

83. String Functions: <string.h >
There are two groups of string functions defined in the header <string. h>. The

first have names beginning with str; the second have names beginning with mem.
Except for memmove,the behavior is undefined if copying takes place between overlap­
ping objects. Comparison functions treat arguments as uns igned char arrays.

In the followingtable, variables sand t are of type char *; cs and ct are of type
const char *; n is of type size_ t; and c is an int converted to char.

In the seven-bit ASCII character set, the printing characters are Ox20 (, ,) to Ox7E
(,_,); the control characters are 0 (NUL) to Ox1F (US), and Ox7F (DEL).

In addition, there are two functions that convert the case of letters:
int tolower (int c) convert c to lowercase
int toupper (int c) convert c to upper case

If c is an upper-case letter, tolower (c) returns the corresponding lower-case letter;
otherwise it returns C. If c is a lower-case letter, toupper (c) returns the correspond­
ing upper-case letter; otherwise it returns C.

isalpha (c) or isdigi t (c) is true
isupper (c) or islower (c) is true
control character
decimal digit
printing character except space
lower-caseletter
printing character including space
printing character except space or letter or digit
space, formfeed, newline,carriage return, tab, vertical tab
upper-case letter
hexadecimal digit

isalnum(c)
isalpha(c)
iscntrl(c)
isdigit(c)
isgraph(c)
islower(c)
isprint(c)
ispunct(c)
isspace(c)
isupper(c)
isxdigit(c)

char, and the return value is an into The functions return non-zero (true) if the argu­
ment c satisfies the conditiondescribed, and zero if not.

STRING FUNCTIONS: <STRING.H> 249SECTION B3



The header"<math. h> declares mathematical functions and macros.
The macros EDOM and ERANGE (found in <errno.h» are non-zero integral con­

stants that are used to signal domain and range errors for the functions; HUGE_ VAL is a
positive double value. A domain error occurs if an argument is outside the domain
over which the function is defined. On a domain error, errno is set to EDOM; the return
value is implementation-dependent. A range error occurs if the result of the function
cannot be represented as a double. If the result overflows, the function returns
HUGE_ VAL with the right sign, and errno is set to ERANGE. If the result underflows,
the function returns zero; whether errno is set to ERANGE is implementation-defined.

In the followingtable, x and yare of type double, n is an int, and all functions
return double. Angles for trigonometric functions are expressed in radians.

84. MathematicalFunctions: <math.h>

copy n characters from ct to s, and return s.
same as memcpy except that it works even if the
objects overlap.
compare the first n characters of cs with ct; return as
with strcmp.
return pointer to first occurrence of character c in cs,
or NULLif not present among the first n characters.
place character c into first n characters of s, return s.

APPENDI~ B

void *memset(s,c,n)

void *memchr(cs,c,n)

int memcmp(cs,ct,n)

void *memcpy(s,ct,n)
void *memmove(s,ct,n)

char *strtok(s,ct)

size_t strlen(cs)
char *strerror(n)

char *strstr(cs,ct)

char *strpbrk(cs,ct)

size_t strcspn(cs,ct)

size t strspn(cs,ct)

250 STANDARD LIBRARY

return length of prefix of cs consisting of characters in
ct.
return length of prefix of c s consisting of characters
not in ct.
return pointer to first occurrence in string cs of any
character of string ct, or NULLif none are present.
return pointer to first occurrence of string ct in cs, or
NULLif not present.
return length of cs.
return pointer to implementation-defined string
correspondingto error n.
strtok searches s for tokens delimited by characters
from ct; see below.

A sequence of calls of strtok ( s , ct) splits s into tokens, each delimited by a
character from ct. The first call in a sequence has a non-NULLs. It finds the first
token in s consisting of characters not in ct; it terminates that by overwriting the next
character of s with ' \0' and returns a pointer to the token. Each subsequent call, indi­
cated by a NULLvalue of s, returns the next such token, searching from just past the
end of the previous one. strtok returns NULLwhen no further token is found. The
string ct may be different on each call.

The melD...functions. are meant for manipulating objects as character arrays; the
intent is an interface to efficient routines. In the followingtable, sand t are of type
void *; cs and ct are of type const void *; n is of type size_ t; and c is an int
converted to an unsigned char.



The header <stdlib. h> declares functions for number conversion,storage alloca­
tion, and similar tasks.

double atof(const char *s)
atof converts s to double; it is equivalent to strtod(s, (char**)NULL).

int atoi(const char *s)
converts s to int; it is equivalent to (int) strtol (s , (char**) NULL,10).

long atol(const char *s)
converts s to long; it is equivalent to strtol (s , (char**) NULL,10).

double strtod(const char *s, char **endp)
strtod converts the prefix of s to double, ignoring leading white space; it stores a
pointer to any unconverted suffix in *endp unless endp is NULL.If the answer

85. Utility Functions: <stdlib.h>

are zero.
modf(x, double *ip)

splits x into integral and fractional parts, each with the
same sign as x. It stores the integral part in * ip, and
returns the fractional part.

fmod(x ,y) floating-point remainder of x/y, with the same sign as
x. If y is zero, the result is implementation-defined.

sine of x

UTILITY FUNCTIONS: <STDLIB.H> 2S1

exp(x)
log(x)
log10(x)
pow(x,y)

cosh{x)
tanh{x)

acos(x)
atan{x)

asin{x)

cos (x)
tan{x)

sin(x)

SECTION B5

cosine of x
tangent of x
sin-l (x) in range [-11'"/2, 11'"/2], x E [-1, 1].
cos"!(x) in range [0, 11'"],x E [-1, 1].
tan"! (x) in range [-11'"/2, 11'"/2].

atan2 (y ,x ) tan-1(y Ix) in range [-11'", 11'"].
sinh (x ) hyperbolic sine of x

hyperbolic cosineof x
hyperbolic tangent of x
exponential function e"
natural logarithm In(x), x >o.
base 10 logarithm log10(x), x> O.
x", A domain error occurs if x-o and y~O, or if
x<0 and y is not an integer.

sqrt(x) Fx, x~O.
ceil (x) smallest integer not less than x, as a double.
floor(x) largest integer not greater than x, as a double.
f abs (x) absolute value Ix I
ldexp(x,n) x·2n
frexp(x, int *exp)

splits x into a normalized fraction in the interval
[112, 1), which is returned, and a power of 2, which is
stored in *exp. If x is zero, both parts of the result



void *realloc(void *p, size_t size)
realloc changes the size of the object pointed to by p to size. The contents will
be unchanged up to the minimum of the old and new sizes. If the new size is larger,
the new space is uninitialized. realloc returns a pointer to the new space, or
NULLif the request cannot be satisfied, in which case *p is unchanged.

void free(void *p)
free deallocates the space pointed to by p; it does nothing if p is NULL.p must be
a pointer to space previouslyallocated by calloc, malloc, or realloc.

void abort(void)
abort causes the program to terminate abnormally, as if by raise (SIGABRT).

void exit(int status)
exi t causes normal program termination. atexi t functions are called in reverse
order of registration, open files are flushed, open streams are closed, and control is
returned to the environment. How status is returned to the environment is
implementation-dependent, but zero is taken as successful termination. The values
EXIT_SUCCESSand EXIT_FAILUREmay also be used.

void *malloc(size_t size)
malloc returns a pointer to space for an object of size size, or NULLif the request
cannot be satisfied. The space is uninitialized.

void *calloc(size_t nobj, size_t size)
calloc returns a pointer to space for an array of nobj objects, each of size size,
or NULLif the request cannot be satisfied. The space is initialized to zero bytes.

void srand(unsigned int seed)
srand uses seed as the seed for a new sequence of pseudo-random numbers. The
initial seed is 1.

unsigned long strtoul(const char *s, char **endp, int base)
strtoul is the same as strtol except that the result is unsigned long and the
error value is ULONG_MAX.

int rand(void)
rand returns a pseudo-random integer in the range 0 to RAND_MAX, which is at
least 32767.

long strtol(const char *s, char **endp, int base)
strtol converts the prefix of s to long, ignoring leading white space; it stores a
pointer to any unconverted suffix in *endp unless endp is NULL. If base is
between 2 and 36, conversionis done assuming that the input is written inthat base.
If base is zero, the base is 8, 10, or 16; leading 0 implies octal and leading Ox or ox
hexadecimal. Letters in either case represent digits from 10 to base-1; a leading
Ox or ox is permitted in base 16. If the answer would overflow, LONG_MAXor
LONG_MINis returned, depending on the sign of the result, and errno is set to
ERANGE.

would overflow,HUGE_VALis returned with the proper sign; if the answer would
underflow, zero is returned. In either case errno is set to ERANGE.

APPENDlX B252 STANDARD LIBRARY



B6. Diagnostics: <assert.h>
The assert macro is used to add diagnosticsto programs:

void assert (int expression)
If expression is zerowhen

as sert (expression)
is executed,the assert macrowillprint on stderr a message,such as

Assertion failed: expression, file filename, line nnn
It then calls abort to terminate execution. The sourcefilenameand line numbercome

void qsort(void *base, size_t n, size_t size,
int (*cmp) (const void *, const void *»

qsort sorts into ascendingorder an array base [0 ]...base [n-1] of objectsof size
size. The comparisonfunctioncmpis as in bsearch.

int abs(int n)
abs returns the absolutevalueof its int argument.

long labs(long n)
labs returns the absolutevalueof its long argument.

div_t div(int num, int denom)
di v computesthe quotient and remainderof num/denom. The resultsare stored in
the int membersquot and rem of a structure of type di v_t.

ldiv_t ldiv(long num, long denom)
div computesthe quotient and remainderofnum/denom. The results are stored in
the long membersquot and rem of a structure of type ldi v_t.

int atexit(void (*fcn)(void»
atexi t registers the function f cn to be called when the program terminates nor­
mally;it returns non-zeroif the registrationcannotbe made.

int system(const char *s)
system passesthe string s to the environmentfor execution. If s is NULL, system
returns non-zeroif there is a commandprocessor. If s is not NULL, the return value
is implementation-dependent.

char *getenv(const char *name)
getenv returns the environmentstring associatedwith name, or NULL if no string
exists. Detailsare implementation-dependent.

void *bsearch(const void *key, const void *base,
size_t n, size_t size,
int (*cmp) (const void *keyval, const void *datum»

bsearch searches base [0 ]...base [n-1] for an item that matches *key. The
function cmpmust return negativeif its first argument (the search key) is less than
its second (a table entry), zero if equal, and positiveif greater. Items in the array
base must be in ascendingorder. bsearch returns a pointer to a matchingitem,
or NULL if noneexists.

DIAGNOSTICS: <ASSERT.H> 253SECTION 86



void longjmp(jmp_buf env, int val)
longjmp restores the state saved by the most recent call to set jmp, using informa­
tion saved in env, and execution resumes as if the set jmp function had just exe­
cuted and returned the non-zero value val. The function containing the set jmp
must not have terminated. Accessible objects have the values they had when
longjmp was called, except that non-volatile automatic variables in the function
calling setjmp become undefined if they were changed after the setjmp call.

The declarations in <setjmp. h> provide a way to avoid the normal function call
and return sequence, typically to permit an immediate return from a deeply nested func- .
tion call.

int setjmp(jmp_buf env)
The macro set jmp saves state information in env for use by long jmp. The return
is zero from a direct call of set jmp, and non-zero from a subsequent call of
longjmp. A call to setjmp can only occur in certain contexts, basically the test of
if, switch, and loops, and only in simple relational expressions.

if (setjmp(env) == 0)
/* get here on direct call */

else
/* get here by calling longjmp */

88. Non-local Jumps: <setjmp.h>

The headet <stdarg. h> provides facilities for stepping through a list of function
arguments of unknown number and type.

Suppose lastarg is the last named parameter of a function f with a variable number
of arguments. Then declare within f a variable ap of type va_list that will point to
each argument in turn:

va_list ap;
ap must be initialized once with the macro va_start before any unnamed argument is
accessed:

va_start (va_list ap, lastarg);
Thereafter, each execution of the macro va_arg will produce a value that has the type
and value of the next unnamed argument, and will also modify ap so the next use of
va_arg returns the next argument:

type va_arg (va_list ap, type);
The macro

void va_end(va_list ap);
must be called once after the arguments have been processed but before f is exited.

B7. Variable Argument Usts: < stdarg.h>

from the preprocessor macros __ FILE __ and __ LINE __ .
If NDEBUG is defined at the time <assert. h> is included, the assert macro is

ignored.

APPENmx B254 STANDARD LIBRARY



clock_t clock(void)
clock returns the processor time used by the program since the beginning of execu­
tion, or -1 if unavailable. clock ( )/CLOCKS_PER_SEC is a time in seconds.

The header <time. h> declares types and functions for manipulating date and time.
Some functions process local time, which may differ from calendar time, for example
because of time zone. clock_ t and time_t are arithmetic types representing times,
and struct tm holds the components of a calendar time:

int tm_sec; seconds after the minute (0, 61)
int tm_min; minutes after the hour (0,59)
int tm_hour; hours since midnight (0,23)
int tm_mday; day of the month (1, 31)
int tm_mon; months since January (0, 11)
int tm_year; years since 1900
int tm_wday; days since Sunday (0,6)
int tm_yday; days since January 1 (0,365)
int tm_isdst; Daylight Saving Time flag

tm_isdst is positive if Daylight Saving Time is in effect, zero if not, and negative if
the information is not available.

810. Date and Time Functions: <time.h>

void (*signal(int sig, void (*handler)(int»)(int)
signal determines how subsequent signals will be handled. If handler is

SIG_DFL, the implementation-defined default behavior is used; if it is SIG_IGN, the
signal is ignored; otherwise, the function pointed to by handler will be called, with the
argument of the type of signal. Valid signals include

SIGABRT abnormal termination, e.g., from abort
SIGFPE arithmetic error, e.g., zero divide or overflow
SIGILL illegal function image, e.g., illegal instruction
SIGINT interactive attention, e.g., interrupt
SIGSEGV illegal storage access, e.g., access outside memory limits
SIGTERM termination request sent to this program

signal returns the previous value of handler for the specific signal, or SIG_ERR if
an error occurs.

When a signal sig subsequently occurs, the signal is restored to its default behavior;
then the signal-handler function is called, as if by (*handler) (sig). If the handler
returns, execution will resume where it was when the signal occurred.

The initial state of signals is implementation-defined.

int raise(int sig)
raise sends the signal sig to the program; it returns non-zero if unsuccessful.

The header <signal. h> provides facilities for handling exceptional conditions that
arise during execution, such as an interrupt signal from an external source or an error in
execution.

89. Signals: < signal.h>

255DATE AND TIME FUNCTIONS: <TIME.H>SECTION 810



size_t strftime(char *s, size_t smax, const char *fmt,
const struct tm *tp)

strftime formats date and time information from *tp into s according to fmt,
which is analogous to a printf format. Ordinary characters (including the ter­
minating '\0') are copied into s. Each %c is replaced as described below, using
values appropriate for the local environment. No more than smax characters are
placed into s. strftime returns the number of characters, excluding the ' \0',or
zero if more than smax characters were produced.

"a abbreviated weekday name.
~ full weekdayname."b abbreviated month name."B full month name."C local date and time representation.
~ day of the month (01-31).
"H hour (24-hour clock) (00-23).
"I hour (12-hour clock) (01-12).
"j day of the year (001-366).

struct tm *localtime(const time_t *tp)
localtime converts the calendar time *tp into local time.

struct tm *gmtime(const time_t *tp)
gmtime converts the calendar time *tp into Coordinated Universal Time (UTC). It
returns NULL if UTC is not available. The name gmtime has historical significance.

char *ctime(const time_t *tp)
ctime converts the calendar time *tp to local time; it is equivalent to

asctime(localtime(tp»

char *asctime(const struct tm *tp)
asctime converts the time in the structure *tp into a string of the form

Sun Jan 3 15:14:13 1988\n\0

The next four functions return pointers to static objects that may be overwritten by
other calls.

time_t mktime(struct tm *tp)
mktime converts the local time in the structure *tp into calendar time in the same
representation used by time. The componentswill have values in the ranges shown.
mktime returns the calendar time or -1 if it cannot be represented.

double difftime(time_t time2, time_t time1)
difftime returns time2-time 1 expressed in seconds.

time_t time(time_t *tp)
time returns the current calendar time or -1 if the time is not available. If tp is
not NULL,the return value is also assigned to *tp.

APPENDIX ~256 STANDARD LIBRARY



2 radix of exponent representation, e.g., 2, 16
floating-point rounding mode for addition

6 decimal digits of precision
1E-5 smallest number x such that 1.0 + x ~ 1.0

number of base FLT_RADIX digits in mantissa
1E+37 maximum floating-point number

maximum n such that FLT_RADIXn-1 is representable
1E- 37 minimum normalized floating-point number

minimum n such that Ion is a normalized number

FLT_RADIX
FLT_ROUNDS
FLT_DIG
FLT_EPSILON
FLT_MANT_DIG
FLT_MAX
FLT_MAX_EXP
FLT_MIN
FLT_MIN_EXP

CHAR_MIN o or SCHAR_MIN
INT_MAX +32767
INT_MIN -32767
LONG_MAX +2147483647
LONG_MIN -2147483647
SCHAR_MAX +127
SCHAR_MIN -127
SHRT_MAX +32767
SHRT_MIN -32767
UCHAR_MAX 255
UINT_MAX 65535
ULONG_MAX 4294967295
USHRT_MAX 65535

B11. Implementation-defined Limits: < IImlts.h> and < float.h>
The header <1imits .h> defines constants for the sizes of integral types. The

values below are acceptable minimum magnitudes; larger values may be used.
CHAR_BIT 8 bits in a char
CHAR_MAX UCHAR_MAXor

SCHAR_MAX maximum value of char
minimum value of char
maximum value of int
minimum value of int
maximum value of long
minimum value of long
maximum value of signed char
minimum value of signed char
maximum value of short
minimum value of short
maximum value of unsigned char
maximum value of unsigned int
maximum value of uns igned long
maximum value of uns igned short

The names in the table below, a subset of <float. h>, are constants related to
floating-point arithmetic. When a value is given, it represents the minimum magnitude
for the corresponding quantity. Each implementation defines appropriate values.

%m month (01-12).
%II. minute (00-59)."p local equivalent of AMor PM.
"S second (00-61).
"U week number of the year (Sunday as 1st day of week) (00-53)."w weekday (0-6, Sunday is 0).
»l week number of the year (Monday as 1st day of week) (00-53).
~ local date representation.
U local time representation.
"y year without century (00-99)."y year with century.
"Z time zone name, if any.

"" ".

IMPLEMENTATION-DEFINED LIMITS: <LIMITS.H> AND <FLOAT.H> 257SECTION Bll



10 decimal digits of precision
1E-9 smallest number x such that 1.0 + x ~ 1.0

number of base FLT _RADIX digits in mantissa
1E+37 maximum double floating-point number

maximum n such that FLT _RADIX"-l is representable
1E-37 minimum normalized double floating-point number

minimum n such that Ion is a normalized number

APPENDIX B

DBL_DIG
DBL_EPSILON
DBL_MANT_DIG
DBL_MAX
DBL_MAX_EXP
DBL_MIN
DBL_MIN_EXP

258 STANDARD LIBRARY



259

Since the publication of the first edition of this book, the definition of the C
language has undergone changes. Almost all were extensions of the original language,
and were carefully designed to remain compatible with existing practice; some repaired
ambiguities in the original description; and some represent modifications that change
existing practice. Many of the new facilities were announced in the documents accom­
panying compilers available from AT&T, and have subsequently been adopted by other
suppliers of C compilers. More recently, the ANSI committee standardizing the language
incorporated most of these changes, and also introduced other significant modifications.
Their report was in part anticipated by some commercial compilers even before issuance
of the formal C standard.

This Appendix summarizes the differences between the language defined by the first
edition of this book, and that expected to be defined by the final Standard. It treats
only the language itself, not its environment and library; although these are an important
part of the Standard, there is little to compare with, because the first edition did not
attempt to prescribe an environment or library.
• Preprocessing is more carefully defined in the Standard than in the first edition, and

is extended: it is explicitly token based; there are new operators for catenation of
tokens (##), and creation of strings (#); there are new control lines like #elif and
#pragma; redeclaration of macros by the same token sequence is explicitly permit­
ted; parameters. inside strings are no longer replaced. Splicing of lines by \ is per­
mitted everywhere, not just in strings and macro definitions. See §A12.

• The minimum significance of all internal identifiers is increased to 31 characters; the
smallest mandated significance of identifiers with external linkage remains 6 mono­
case letters. (Many implementations provide more.)

• Trigraph sequences introduced by ?? allow representation of characters lacking in
some character sets. Escapes for #\" []{}I .. are defined; see §A12.1. Observe that
the introduction of trigraphs may change the meaning of strings containing the
sequence ??

• New keywords (void, const, volatile, signed, enwn) are introduced. The
stillborn entry keyword is withdrawn.

• New escape sequences, for use within character constants and string literals, are
defined. The effect of following \ by a character not part of an approved escape
sequence is undefined. See §A2.S.2.

APPENDIX c. Summary of Changes



• Everyone'sfavorite trivial change: 8 and 9 are not octal digits.
• The Standard introduces a larger set of suffixes to make the type of constants expli­

cit: Uor L for integers, F or L for floating. It also refines the rules for the type of
unsuffixed constants (§A2.5).

• Adjacent string literals are concatenated.
• There is a notation for wide-character string literals and character constants; see

§A2.6.
• Characters, as well as other types, may be explicitly declared to carry, or not to

carry, a sign by using the keywords signed or unsigned. The locution long
float as a synonym for double is withdrawn; but long double may be used to
declare an extra-precision floating quantity.

• For some time, type unsigned char has been available. The standard introduces
the signed keyword to make signedness explicit for char and other integral
objects.

• The void type has been available in most implementations for some years. The
Standard introduces the use of the void * type as a generic pointer type; previously
char * played this role. At the same time, explicit rules are enacted against mixing
pointers and integers, and pointersof different type, without the use of casts.

• The Standard places explicit minima on the ranges of the arithmetic types, and man­
dates headers « limi ts •h> and <floa t .h» giving the characteristics of each
particular implementation.

• Enumerations are new since the first edition of this book.
• The Standard adopts from C++ the notion of type qualifier, for example const

(§A8.2).
• Strings are no longer modifiable, and so may be placed in read-only memory.
• The "usual arithmetic conversions" are changed, essentially from "for integers,
unsigned always wins; for floating point, always use double" to "promote to the
smallest capacious-enoughtype." See §A6.5.

• The old assignment operators like =+ are truly gone. Also, assignment operators are
now single tokens; in the first edition, they were pairs, and could be separated by
white space.

• A compiler's license to treat mathematically associativeoperators as computationally
associativeis revoked.

• A unary + operator is introduced for symmetry with unary -.
• A pointer to a function may be used as a function designator without an explicit *

operator. See IA7.3.2.
• Structures may be assigned, passed to functions, and returned by functions.
• Applying the address-of operator to arrays is permitted, and the result is a pointer to

the array.
• The sizeof operator, in the first edition, yielded type int; subsequently, many

implementations made it unsigned. The Standard makes its type explicitly
implementation-dependent, but requires the type, size_ t, to be defined in a

APPENDIXC160 SUMMARYOF CHANGES



standard header «stddef .h». A similar change occurs in the type
(ptrdiff _t) of the difference between pointers. See §A7.4.8 and §A7.7.

• The address-of operator &. may not be applied to an object declared register, even
if the implementationchoosesnot to keep the object in a register.

• The type of a shift expressionis that of the left operand; the right operand can't pro­
mote the result. See §A7.8.

• The Standard legalizes the creation of a pointer just beyond the end of an array, and
allowsarithmetic and relations on it; see §A7.7.

• The Standard introduces (borrowing from C++) the notion of a function prototype
declaration that incorporates the types of the parameters, and includes an explicit
recognition of variadic functions together with an approved way of dealing with
them. See §§A7.3.2, A8.6.3, B7. The older style is still accepted, with restrictions.

• Empty declarations, which have no declarators and don't declare at least a structure,
union, or enumeration, are forbidden by the Standard. On the other hand, a declara­
tion with just a structure or union tag redeclares that tag even if it was declared in
an outer scope.

• External data declarations without any specifiers or qualifiers (just a naked declara­
tor) are forbidden.

• Some implementations, when presented with an extern declaration in an inner
block, would export the declaration to the rest of the file. The Standard makes it
clear that the scopeof such a declaration is just the block.

• The scope of parameters is injected into a function's compound statement, so that
variable declarations at the top levelof the function cannot hide the parameters.

• The name spaces of identifiers are somewhatdifferent. The Standard puts all tags in
a single name space, and also introduces a separate name space for labels; see
§All.l. Also, member names are associated with the structure or union of which
they are a part. (This has been commonpractice from some time.)

• Unions may be initialized; the initializer refers to the first member.
• Automatic structures, unions, and arrays may be initialized, albeit in a restricted

way.
• Character arrays with an explicit size may be initialized by a string literal with

exactly that many characters (the \0 is quietly squeezedout).
• The controlling expression, and the case labels, of a switch may have any integral

type.

APPENDIX C 261SUMMARY OF CHANGES





263

abs library function 253
abstract declarator no
access mode, file 160, 178, 242
acos library function 251
actual argument see argument
addition operator, + 41, 205
additive operators 205
addpoint function 130
address arithmetic see pointer arithmetic
address of register 210
address of variable 28, 94, 203
address operator, &. 93, 203
addtree function )41
afree function 102
alert character, \a 38, 193
alignment, bit-field 150, 213
alignment by union 186
alignment restriction 138, 142, 148,167, 185,

199
alloc function 101
allocator, storage 142, 185-189
ambiguity, if-else 56, 223, 234
American National Standards Institute (ANSI)

ix, 2, 191
a.out 6,70
argc argument count 114
argument, definition of 25, 201
argument, function 25, 202
argument list, variable length 155, 174, 202,

218, 225, 254
argument list, void 33, 73, 218, 225
argument, pointer 100
argument promotion 45, 202
argument, subarray 100
arguments, command-line 114-118
argv argument vector 114, 163
arithmetic conversions, usual 42, 198
arithmetic operators 41
arithmetic, pointer 94, 98, 100-103, 117, 138,

205
arithmetic types 196
array, character 20, 28, 104
array declaration 22, III, 216
array declarator 216
array initialization 86, 113, 219
array, initialization of two-dimensional 112,

220

Index

\a alert character 38, 193
abort library function 252

0 octal constant 37, 193
Ox hexadecimal constant 37,193
+ addition operator 41, 205
s, address operator 93, 203
= assignment operator 17, 42, 208
+= assignment operator 50
\ \ backslash character 8, 38
&.bitwise AND operator 48, 207
A bitwise exclusive OR operator 48, 207
: bitwise inclusive OR operator 48, 207
, comma operator 62, 209
?: conditional expression 51, 208
•.• declaration 155, 202
-- decrement operator 18, 46, 106, 203
/ division operator 10, 41, 205
== equality operator 19,41, 207
>= greater or equal operator 41, 206
> greater than operator 41, 206
+ + increment operator 18, 46, 106, 203
* indirection operator 94, 203
I= inequality operator 16, 41, 207
« left shift operator 49, 206
<= less or equal operator 41, 206
< less than operator 41, 206
&.&.logicalAND operator 21, 41, 49, 207
I logical negation operator 42, 203-204
: : logical OR operator 21,41, 49, 208
" modulus operator 41, 205
* multiplication operator 41, 205
- one's complement operator 49, 203-204
# preprocessor operator 90, 230
## preprocessor operator 90, 230
, quote character 19, 37-38, 193
" quote character 8, 20, 38, 194
» right shift operator 49, 206
• structure member operator 128, 201
-> structure pointer operator 131, 201
- subtraction operator 41, 205
- unary minus operator 203-204
+ unary plus operator 203-204
_ underscore character 35, 192, 241
\0 null character 30, 38, 193



calculator program 72, 74, 76, 158
call by reference 27
call by value 27, 95, 202
calloc library function 167, 252
canonrect function 131
carriage return character, \r 38, 193
case label 58, 222
cast, conversion by 45, 198-199, 205
cast operator 45, 142, 167, 198,205,220
cat program 160, 162-163
cc command 6, 70
ceil library function 251
char type 10, 36, 195, 211
character array 20, 28, 104
character constant 19, 37, 193
character constant, octal 37
character constant, wide 193
character count program 18
character input/output 15, 151
character set 229
character set, ASCII 19,37,43,229,249
character set, EBCDIC 43
character set, ISO 229
character, signed 44, 195
character string see string constant
character testing functions 166, 248
character, unsigned 44, 195
character-integer conversion 23, 42, 197
characters, white space 157, 166, 245, 249
clearerr library function 248
CLOCKS PER SEC 255
clock library-function 255
clock_t type name 255
close system call 174
closedir function 184
coercion see cast
comma operator, , 62, 209
command-line arguments 114-118
comment 9, 191-192, 229
comparison, pointer 102, 138, 187, 207
compilation, separate 67, 80, 227
compiling a C program 6, 25
compiling multiple files 70
compound statement 55, 84, 222, 225-226
concatenation, string 38, 90, 194
concatenation, token 90, 230
conditional compilation 91, 231
conditional expression, ?: 51, 208
const qualifier 40, 196,'211
constant expression 38, 58, 91, 209
constant, manifest 230
constant suffix 37, 193
constant, type of 37, 193
constants 37, 192
continue statement 65, 224
control character 249
control line 88, 229-233
conversion 197-199
conversion by assignment 44, 208
conversion by cast 45, 198-199, 205

buffering see setbuf, setvbuf
BUFSIZ 243

INDEX

\b backspace character 8, 38, 193
backslash character, \ \ 8, 38
bell character see alert character
binary stream 160, 241-242
binary tree 139
binsearch function 58, 134, 137
bit manipulation idioms 49, 149
bi tcount function 50
bit-field alignment 150, 213
bit-field declaration 150, 212
bitwise AND operator, s, 48, 207
bitwise exclusive OR operator, A 48, 207
bitwise inclusive OR operator, I 48, 207
bitwise operators 48, 207
block see compound statement
block, initialization in 84, 223
block structure 55, 84, 223
boundary condition 19, 65
braces 7, 10, 55, 84
braces, position of 10
break statement 59, 64, 224
bsearch library function 253
buffered getchar 172
buffered input 170

array, multi-dimensional 110, 217
array name argument 28, 100, 112
array name, conversion of 99, 200
array of pointers 107
array reference 201
array size, default 86, 113, 133
array, storage order of 112, 217
array subscripting 22,97,201,217
array, two-dimensional 110, 112, 220
array vs. pointer 97, 99-100, 104, 113
arrays of structures 132
ASCII character set 19, 37, 43, 229, 249
asctime library function 256
asin library function 251
asmkeyword 192
<assert. h>header 253
assignment, conversion by 44, 208
assignment expression 17, 21, 51, 208
assignment, multiple 21
assignment operator, = 17,42,208
assignment operator, += 50
assignment operators 42, 50, 208
assignment statement, nested 17, 21, 51
assignment suppression, scanf 157, 245
associativity of operators 52, 200
atan, atan2 library functions 251
atexi t library function 253
atof function 71
atof library function 251
atoi function 43, 61, 73
atoi library function 251
atol library function 251
auto storage class specifier 210
automatic storage class 31, 195
automatic variable 31, 74, 195
automatics, initialization of 31, 40, 85, 219
automatics, scope of 80, 228
avoiding goto 66

THE C PROGRAMMINGLANGUAGE264



E notation 37, 194
EBCDIC character set 43
echo program 115-116
EDOM 250
efficiency 51, 83, 88, 142, 187
else see if-else statement
#else, #elif 91,232
else-if 23, 57
empty function 70
empty statement see null statement
empty string 38
end of file see EOF
#endif 91
enumspecifier 39, 215
enumvs. #define 39, 149
enumeration constant 39,91, 193-194,215
enumeration tag 215
enumeration type 196
enumerator 194, 215
EOF 16, 151,242
equality operator, == 19,41,207
equality operators. 41, 207
equivalence, type 221
ERANGE 250
errno 248, 250
<errno .h>header 248
#error 233
error function 174
errors, input/output 164, 248
escape sequence 8, 19, 37-38, 193, 229
escape sequence, \x hexadecimal 37, 193
escape sequences, table of 38, 193
evaluation, order of 21, 49, 53, 63, 77, 90, 95,

200
exceptions 200, 255
exi t library function 163, 252
EXIT FAILURE, EXIT SUCCESS 252
exp library function 251
expansion, macro 230
explicit conversion operator see cast
exponentiation 24, 251
expression 200-209

dereference see indirection
derived types 1, 10, 196
descriptor, file 170
designator, function 201
difftime library function 256
DIR structure 180
dirdcl function 1].4
directory list program 179
Dirent structure 180
dir .h include file 183
dirwalk function 182
div library function 253
division, integer 10, 41
division operator, / 10, 41, 205
di v_t, ldi v_t type names 253
do statement 63, 224
do-nothing function 70
double constant 37, 194
double type 10, 18,36, 196, 211
double-float conversion 45,198

265INDEX

date conversion III
day_of_year function III
dcl function 123
dcl program 125
declaration 9, 40, 210-218
declaration, array 22, Ill,216
declaration, bit-field 150, 212
declaration, external 225-226
declaration of external variable 31, 225
declaration of function 217-218
declaration of function, implicit 27, 72, 201
declaration of pointer 94, 100, 216
declaration, storage class 210
declaration, structure 128, 212
declaration, type 216
declaration, type'def 146, 210, 221
declaration, union 147, 212
declaration vs. definition 33, 80, 210
declarator 215-218
declarator, abstract 220
declarator, array 216
declarator, function 217
decrement operator, -- 18,46, 106, 203
default array size 86, 113, 133
default function type 30, 201
default initialization 86, 219
defaul t label 58, 222
defensive programming 57, 59
#define 14,89,229
#def ine, multi-line 89
#define vs. enum39, 149
#define with arguments 89
defined preprocessor operator 91,232
definition, function 25, 69, 225
definition, macro 229
definition of argument 25, 201
definition of external variable 33, 227
definition of parameter 25, 201
definition of storage 210
definition, removal of see #undef
definition, tentative 227

conversion by return 73, 225
conversion, character-integer 23, 42, 197
conversion, double-f loa t 45, 198
conversion, float-double 44, 198
conversion, floating-integer 45, 197
conversion, integer-character 45
conversion, integer-floating 12, 197
conversion, integer-pointer 199, 205
conversion of array name 99, 200
conversion of function 200
conversion operator, explicit see cast
conversion, pointer 142, 198, 205
conversion, pointer-integer 198-199, 205
conversions, usual arithmetic 42, 198
copy function 29, 33
cos library function 251
cosh library function 251
crea t system call 172
CRLF 151, 241
ctime library function 256
<ctype .h>header 43, 248

THE C PROGRAMMING LANGUAGE



generic pointer see void * pointer
getbi ts function 49
getc library function 161, 247
getc macro 176
getch function 79
getchar, buffered 172
getchar library function 15, 151, 161, 247
getchar, unbuffered 171
getenv library function 253
getint function 97
get line function 29, 32, 69, 165
getop function 78
gets library function 164, 247
get token function 125
getword function 136
gmtime library function 256
goto statement 65, 224
greater or equal operator, >= 41, 206

for vs. while 14, 60
formal parameter see parameter
formatted input see scanf
formatted output see printf
formfeed character, \f 38, 193
fortran keyword t 92
fpos_ t type name 248
fprintf library function 161, 243
fputc library function 247
fputs function 165
fputs library function 164, 247
fread library function 247
free function 188
free library function 167, 252
freopen library function 162, 242
frexp library function 251
fscanf library function 161, 245
f seek library function 248
fsetpos library function 248
fsize function 182
fsize program 181
fstat system call )83
ftelllibrary function 248
function argument 25, 202
function argument conversion see argument

promotion
function call semantics 201
function call syntax 201
function, conversion of 200
function, declaration of 217-218
function declaration, static 83
function declarator 217
function definition 25, 69, 225
function designator 201
function, implicit declaration of 27, 72, 201
function names, length of 35, 192
function, new-style 202
function, old-style 26, 33, 72, 202
function, pointer to 118, 147, 201
function prototype 26, 30, 45, 72, 120, 202
function type, default 30, 201
functions, character testing 166, 248
fundamental types 9, 36, 195
fwri te library function 247

INDEX

\f formfeed character 38, 193
fabs library function 251
f c Loae library function 162, 242
f cntl. h include file 172
f eof library function 164, 248
feof macro 176
ferror library function 164, 248
ferror macro 176
fflush library function 242
fgetc library function 246
fgetpos library function 248
fgets function 165
fgets library function 164, 247
field see bit-field
file access 160, 169, 178, 242
file access mode 160, 178, 242
file appending 160, 175, 242
file concatenation program 160
file copy program 16-17, 171, 173
file creation 161, 169
file descriptor 170
file inclusion 88, 231
file opening 160, 169, 172
file permissions 173
file pointer 160, 175, 242
__ FILE __ preprocessor name 254
FILE type name 160
filecopy function 162
filename suffix, •h 33
FILENAME MAX 242
f i llbuf -function 178

float constant 37, 194
float type 9,36, 196, 211
float-double conversion 44, 198
<float. h> header 36, 257
floating constant 12, 37, 194
floating point, truncation of 45, 197
floating types 196
floating-integer conversion 45, 197
floor library function 251
fmod library function 251
f open function 177
fopen library function 160, 242
FOPEN MAX 242
for ( ; -;) infinite loop 60, 89
for statement 13, 18,60,224

expression, assignment 17, 21, 51, 208
expression, constant 38, 58, 91, 209
expression order of evaluation 52, 200
expression, parenthesized 201
expression, primary 200
expression statement 55, 57, 222
extern storage class specifier 31, 33, 80, 210
external declaration 225-226
external linkage 73,192,195,211,228
external names, length of 35, 192
external static variables 83
external variable 31, 73, 195
external variable, declaration of 31, 225
external variable, definition of 33, 227
externals, initialization of 40, 81, 85, 219
externals, scope of 80, 228

266 THE C PROGRAMMING LANGUAGE



label 65, 222
label, case 58, 222
label, default 58, 222
label, scope of 66, 222, 228
labeled statement 65, 222
labs library function 253
%ld conversion 18
1dexp library function 251
1di v library function 253
leap year computation 41, III
left shift operator, « 49, 206
length of names 35, 192
length of string 30, 38, 104
length of variable names 192
less or equal operator, <= 41, 206
less than operator, < 41, 206
lexical conventions 191
lexical scope 227
lexicographic sorting 118
library function 7, 67, 80
<limi ts. h> header 36, 257
#line 233
line count program 19
__LINE__ preprocessor name 254
line splicing 229
linkage 195, 227-228
linkage, external 73, 192, 195,211,228
linkage, internal 195, 228
list directory program 179
list of keywords 192
locale issues 241
<locale. h> header 241
local time library function 256
log, log 10 library functions 251
logical AND operator, as, 21, 41, 49,207
logical expression, numeric value of 44

keyboard input 15,151,170
keyword count program 133
keywords, list of 192

jump statements 224

internal linkage 195, 228
internal names, length of 35, 192
internal static variables 83
IOFBF, IOLBF, IONBF 243

isa1num library function 136, 249
isa1pha library function 136, 166, 249
iscntr1library function 249
isdigi t library function 166, 249
isgraph library function 249
Ls Lower library function 166, 249
ISO character set 229
isprint library function 249
ispunct library function 249
isspace library function 136, 166,249
isupper library function 166, 249
isxdigi t library function 249
iteration statements 224
i toa function 64

INDEX 267

identifier 192
#if 91, 135,231
#ifdef 91, 232
if-else ambiguity 56, 223, 234
if-else statement 19,21, 55, 223
#ifndef 91, 232
illegal pointer arithmetic 102-103, 138, 205
implicit declaration of function 27, 72, 201
#inc1ude 33,88,152,231
incomplete type 212
inconsistent type declaration 72
increment operator, ++ 18, 46, 106, 203
indentation 10, 19,23,56
indirection operator, * 94, 203
inequality operator, 1= 16,41, 207
infinite loop, for ( ; ;) 60, 89
information hiding 67-68, 75, 77
initialization 40, 85, 218
initialization, array 86, 113, 219
initialization by string constant 86, 219
initialization, default 86, 219
initialization in block 84, 223
initialization of automatics 31, 40, 85, 219
initialization of externals 40, 81, 85, 219
initialization of statics 40, 85, 219
initialization of structure arrays 133
initialization of two-dimensional array 112,

220
initialization, pointer 102, 138
initialization, structure 128, 219
initialization, union 219
initializer 227
initializer, form of 85, 209
inode 179
input, buffered 170
input, formatted see scanf
input, keyboard 15, 151, 170
input pushback 78
input, unbuffered 170
input/output, character 15, 151
input/output errors 164, 248
input/output redirection 152, 161, 170
install function 145
int type 9, 36, 211
integer constant 12, 37, 193
integer-character conversion 45
integer-floating conversion 12, 197
integer-pointer conversion 199, 205
integral promotion 44, 197
integral types 196

•h filename suffix 33
hash function 144
hash table 144
header file 33, 82
headers, table of standard 241
hexadecimal constant, Ox... 37, 193
hexadecimal escape sequence, \x 37, 193
Hoare, C. A. R. 87
HUGE_ VAL 250

greater than operator, > 41, 206

THE C PROGRAMMINGLANGUAGE



parameter 84, 99, 202
parameter, definition of 25, 201
parenthesized expression 201
parse tree 123
parser, recursive-descent 123
pattern finding program 67, 69, 116-117
permissions, file 173
perror library function 248
phases, translation 191, 228
pipe 152, 170
pointer argument 100
pointer arithmetic 94, 98, 100-103, 117, 138,

205
pointer arithmetic, illegal 102-103, 138, 205
pointer arithmetic, scaling in 103, 198
pointer comparison 102, 138, 187, 207
pointer conversion 142,. 198, 205
pointer, declaration of 94, 100, 216
pointer, file 160, 175, 242
pointer generation 200

object 195, 197
octal character constant 37
octal constant, 0... 37, 193
old-style function 26, 33, n, 202
one's complement operator, - 49, 203-204
open system call 1n
opendir function )83
operations on unions 148
operations permitted on pointers 103
operators, additive 205
operators, arithmetic 41
operators, assignment 42, 50, 208
operators, associativity of 52, 200
operators, bitwise 48, 207
operators, equality 41, 207
operators, multiplicative 205
operators, precedence of 17,52,95, 131-132,

200
operators, relational 16, 41, 206
operators, shift 48, 206
operators, table of 53
order of evaluation 21, 49, 53, 63, 77, 90, 95,

200
order of translation 228
O_RDONLY,O_RD~O_WRONLY 172
output, formatted see printf
output redirection 152
output, screen 15, 152, 163, 170
overflow 41, 200, 250, 255

new-style function 202
NULL 102
null character, \0 30, 38, 193
null pointer 102, 198
null statement 18, 222
null string 38
numbers, size of 9, 18, 36, 257
numcmpfunction 121
numeric sorting 118
numeric value of logical expression 44
numeric value of relational expression 42, 44

INDEX

\n newline character 7, IS, 20, 37-38, 193,
241

name 192
name hiding 84
name space 227
names, length of 35, 192
negative subscripts 100
nested assignment statement 17, 21, 51
nested structure 129
newline 191, 229
newline character, \n 7, IS, 20, 37-38, 193,

241

macro preprocessor 88, 228-233
macros with arguments 89
magic numbers 14
main function 6
main, return from 26, 164
makepoint function 130
malloc function 187
malloc library function 143, 167, 252
manifest constant 230
<math. h> header 44, 250
member name, structure 128, 213
memchr library function 250
memcmplibrary function 250
memcpylibrary function 250
memmovelibrary function 250
memset library function 250
missing storage class specifier 211
missing type specifier 211
mktime library function 256
modf library function 251
modularization 24, 28, 34, 67, 74-75, 108
modulus operator," 41, 205
month_ day function III
month name function 113
morecore function 188
multi-dimensional array 110, 217
multiple assignment 21
multiple files, compiling 70
multiplication operator, * 41, 205
multiplicative operators 205
multi-way decision 23, 57
mutually recursive structures 140, 213

logical negation operator, I 42, 203-204
logical OR operator, I J 21, 41, 49, 208
long constant 37, 193
long double constant 37,194
long double type 36, 196
long type 10, 18, 36, ·196, 211
longest-line program 29, 32
longjmp library function 254
LONG MAX, LONG MIN 252
lookup function 145
loop see while, for, do
lower case conversion program 153
lower function 43
1s command 179
lseek system call 174
Ivalue 197

268 THE C PROGRAMMING LANGUAGE



sbrk system call 187
scaling in pointer arithmetic 103, 198
scanf assignment suppression 157, 245
scanf conversions, table of 158, 246
scanf library function 96, 157, 246
scientific notation 37, 73
scope 195, 227-228
scope, lexical 227
scope of automatics 80, 228
scope of externals 80, 228
scope of label 66, 222, 228
scope rules 80, 227
screen output 15, 152, 163, 170
SEEK_C~ SEEK_END,SEEK_SET 248
selection statement 223

\r carriage return character 38, 193
raise library function 255
rand function 46
rand library function 252
RAND MAX 252
read system call 170
readdir function 184
readlines function 109
realloc library function 252
recursion 86, 139, 141, 182, 202, 269
recursive-descent parser 123
redirection see input/output redirection
register, address of 210
register storage class specifier 83, 210
relational expression, numeric value of 42, 44
relational operators 16, 41, 206
removal of definition see #undef
remove library function 242
rename library function 242
reservation of storage 210
reserved words 36, 192
return from main 26, 164
return statement 25, 30, 70, 73, 225
return, type conversion by 73, 225
reverse function 62
reverse Polish notation 74
rewind library function 248
Richards, M. 1
right shift operator,» 49, 206
Ritchie, D. M. xi

qsort function 87, 110, 120
qsort library function 253
qualifier, type 208, 211
quicksort 87, 110
quote character,' 19, 37-38, 193
quote character, " 8, 20, 38, 194

ptrdiff_ t type name 103, 147, 206
push function 77
pushback, input 78
putc library function 161, 247
putc macro 176
putchar library function 15, 152, 161,247
puts library function 164, 247

INDEX 269

pointer initialization 102, 138
pointer, null 102, 198
pointer subtraction 103, 138, 198
pointer to function 118, 147, 201
pointer to structure 136
pointer, void * 93, 103, 120, 199
pointer vs. array 97, 99-100, 104, 113
pointer-integer conversion 198-199, 205
pointers and subscripts 97, 99, 217
pointers, array of 107
pointers, operations permitted on 103
Polish notation 74
pop function 77
portability 3, 37,43,49, 147, 151, 153, 185
position of braces 10
postfix + + and - - 46, 105
pow library function 24, 2S 1
power function 25, 27
#pragma 233
precedence of operators 17, 52, 95, 131-132,

200
prefix + + and - _ 46, 106
preprocessor, macro 88, 228~233
preprocessor name, __ FILE__ 254
preprocessor name, __LINE__ 254
preprocessor names, predefined 233
preprocessor operator, # 90, 230
preprocessor operator, ## 90, 230
preprocessor operator, defined 91, 232
primary expression 200
printd function 87
printf conversions, table of 154, 244
printf examples, table of 13, 154
printf library function 7, 11, 18, 153, 244
printing character 249
program arguments see command-line

arguments
program, calculator 72, 74, 76, 158
program, cat 160, 162-163
program, character count 18
program, dcl 125
program, echo 115-:116
program, file concatenation 160
program, file copy 16-17, 171, 173
program format 10, 19, 23, 40, 138, 191
program, fsize 181
program, keyword count 133
program, line count 19
program, list directory 179
program, longest-line 29, 32
program, lower case conversion 153
program, pattern finding 67, 69, 116-117
program readability 10, 51, 64, 86, 147
program, sorting 108, 119
program, table lookup 143
program, temperature conversion 8-9, 12-13,

15
program, undcl 126
program, white space count 22, 59
program, word count 20, 139
promotion, argument 45, 202
promotion, integral 44, 197
prototype, function 26, 30, 45, 72, 120, 202
ptinrect function 130

THE C PROGRAMMING LANGUAGE



<stddef . h> header 103, 135, 241
stderr 161, 163, 242
stdin 161, 242
<stdio. h> contents 176
<stdio. h> header 6, 16, 89-90, 102,

151-152,241
<stdlib. h> header 71, 142, 251
stdout 161, 242
storage allocator 142, 185-189
storage class 195
storage class, automatic 31, 195
storage class declaration 210
storage class specifier 210
storage class specifier, auto 210
storage class specifier, extern 31, 33, 80,

210
storage class specifier, missing 211
storage class specifier, register 83, 210
storage class specifier, static 83, 210
storage class, static 31, 83, 195
storage, definition of 210
storage order of array 112, 217
storage, reservation of 210
strcat function 48
strcat library function 249
strchr library function 249
strcmp function 106
strcmp library function 249
strcpy function 105-106
strcpy library function 249
strcspn library function 250
stream, binary 160, 241-242
stream, text 15, 151, 241
strerror library function 250
strftime library function 256
strindex function 69
string concatenation 38, 90, 194
string constant 7, 20, 30, 38,99, 104, 194
string constant, initialization by 86, 219
string constant, wide 194
string, length of 30, 38, 104
string literal see string constant
string, type of 200
<string. h> header 39, 106, 249
strlen function 39, 99, 103
strlen library function 250
strnca t library function 249
strncmp library function 249
strncpy library function 249
strpbrk library function 250
strrchr library function 249
strspn library function 250
strstr library function 250
strtod library function 251
strtok library function 250
strtol, strtoul library functions 252
struct specifier 212
structure arrays, initialization of 133
structure declaration 128, 212
structure initialization 128, 219
structure member name 128, 213
structure member operator, 128, 201
structure, nested 129
structure pointer operator, _> 131, 201

INDEX

self-referential structure 140, 213
semicolon 10, 15, 18, 55, 57
separate compilation 67, 80, 227
sequencing of statements 222
set):)uf library function 243
setjmp library function 254
<setjmp.h> header 254
setvj:)uf library function 243
Shell, D. L. 61
shellsort function 62
shift operators 48, 206
short type 10, 36, 196, 211
side effects 53, 90, 200, 202
SIG_DFL,SIG_E~ SIG_IGN 255
sign extension 44-45, 177, 193
signal library function 255
<signal. h> header 255
signed character 44, 195
signed type 36, 211
sin library function 251
sinh library function 251
size of numbers 9, 18, 36, 257
size of structure 138, 204
sizeofoperator 91,103,135,203-204,247
size_t type name 103, 135, 147,204, 242
sorting, lexicographic 118
sorting, numeric 118
sorting program 108, 119
sorting text lines 107, 119
specifier, auto storage class 210
specifier, enum 39, 215
specifier, extern storage class 31, 33, 80,

210
specifier, missing storage class 211
specifier, register storage class 83, 210
specifier, static storage class 83, 210
specifier, storage class 210
specifier, struct 212
specifier, type 211
specifier, union 212
splicing, line 229
sprintf library function 155, 245
sqrt library function 251
squeeze function 47
srand function 46
srand library function 252
sscanf library function 246
standard error 161, 170
standard headers, table of 241
standard input 151,161, 170
standard output 152, 161, 170
stat structure 180
stat system call 180
statement terminator 10, 55
statements 222-225
statements, sequencing of 222
stat. h include file 180-181
static function declaration 83
static storage class 31, 83, 19)
static storage class specifier 83, 210
static variables, external 83
static variables, internal 83
statics, initialization of 40, 85, 219
<stdarg. h> header 155, 174, 254

270 THE C PROGRAMMING LANGUAGE



\v vertical tab character 38, 193
va_list, va_start,va_arg, va_end

155, 174, 245, 254
variable 195
variable, address of 28, 94, 203
variable, automatic 31, 74, 195
variable, external 31, 73, 195
variable length argument list 155, 174, 202,

218, 225, 2~4

ULONG MAX 252
unary minus operator, _ 203-204
unary plus operator, + 203-204
unbuffered getchar 171
unbuffered input 170
undcl program 126
lundef 90,172,230
underflow 41, 250, 255
underscore character, _ 35, 192,241
ungetc library function 166, 247
ungetch function 79
union, alignment by 186
union declaration 147, 212
union initialization 219
union specifier 212
union tag 212
unions, operations on 148
UNIX file system 169, 179
unl ink system call 174
unsigned char type 36, 171
unsigned character 44, 195
unsigned constant 37, 193
unsigned long constant 37,193
unsigned type 36, 50, 196, 211
usual arithmetic conversions 42, 198

trigraph sequence 229
trim function 65
truncation by division 10, 41, 205
truncation of floating point 45, 197
two-dimensional array 110, 112, 220
two-dimensional array, initialization of 112,

220
type conversion by return 73, 225
type conversion operator see cast
type conversion rules 42, 44, 198
type declaration 216
type declaration, inconsistent 72
type equivalence 221
type, incomplete 212
type names 220
type of constant 37, 193
type of string 200
type qualifier 208, 211
type specifier 211
type specifier, missing 211
typedef declaration 146, 210, 221
types, arithmetic 196
types, derived I, 10, 196
types, floating 196
types, fundamental 9, 36, 195
types, integral 196
types.h include file 181,183

271INDEX

\t tab character 8, 11, 38, 193
table lookup program 143
table of escape sequences 38, 193
table of operators 53
table of printf conversions 154, 244
table of printf examples 13, 154
table of scanf conversions 158, 246
table of standard headers 241
tag, enumeration 215
tag, structure 128, 212
tag, union 212
talloc function 142
tan library function 251
tanh library function 251
temperature conversion program 8-9, 12-13,

15
tentative definition 227
terminal input and output 15
termination, program 162, 164
text lines, sorting 107, 119
text stream 15, 151, 241
Thompson, K. L. 1
time library function. 256
<time .h> header 255
time_t type name 255
tmpfile library function 243
TMP MAX 243
tmpnamlibrary function 243
token 191, 229
token concatenation 90, 230
token replacement 229
tolower library function 153, 166, 249
toupper library function 166, 249
translation, order of 228
translation phases 191, 228
translation unit 191, 225, 227
tree, binary 139
tree, parse 123
treeprint function 142

structure, pointer to 136
structure reference semantics 202
structure reference syntax 202
structure, self-referential 140, 213
structure, size of 138, 204
structure tag 128, 212
structures, arrays of 132
structures, mutually recursive 140, 213
subarray argument 100
subscripting, array 22, 97, 201, 217
subscripts and pointers 97, 99, 217
subscripts, negative 100
subtraction operator, - 41, 205
subtraction, pointer 103, 138, 198
suffix, constant 193
swap function 88, 96, 110, 121
swi tch statement 58, 75, 223
symbolic constants, length of 35
syntax notation 194
syntax of variable names 35, 192
syscalls. h include file 171
system calls 169
system library function 167, 253

THE C PROGRAMMING LANGUAGE



zero, omitted test against 56, 105

\x hexadecimal escape sequence 37, 193

wchar _t type name 193
while statement 10, 60, 224
while vs. for 14, 60
white space 191
white space characters 157, 166, 245, 249
white space count program 22, 59
wide character constant 193
wide string constant 194
word count program 20, 139
wri te system call 170
writelines function 109

variable names, length of 192
variable names, syntax of 35, 192
vertical tab character, \v 38, 193
void * pointer 93, 103, 120, 199
void argument list 33, 73, 218, 225
void type 30, 196, 199,211
volatile qualifier 196, 211
vprintf, vfprintf, vsprintf library

functions 174, 245

INDEXTHE C PROGRAMMING LANGUAGE272





ISBN 0-13-110362-8

PRENTICE HALL, Englewood Cliffs, N.J. 07632

As we said in the preface to the first edition, C "wears well as one's experience with
it grows." With a decade more experience, we still feel that way. We hope that this
book will help you to learn C and use it well.

From the Preface

We have tried to retain the brevity of the first edition. C is not a big language, and it
is not well served by a big book. We have improved the exposition of critical
features, such as pointers, that are central to C programming. We have refined the
original examples, and have added new examples in several chapters. For instance,
the treatment of complicated declarations is augmented by programs that convert
declarations into words and vice versa. As before, all examples have been tested
directly from the text, which is in machine-readable form.

The C Programming Language
Second Edition

Brian W. Kernighan/Dennis M. Ritchie


